Using the relation at equilibrium:
$\Delta G = \Delta H - T\Delta S = 0$
Rearranging for $T$:
$T = \frac{\Delta H}{\Delta S}$
Substitute the given values:
$\Delta H_\text{vap} = 30 \, \text{kJ/mol} = 30 \times 10^3 \, \text{J/mol}$, $\Delta S_\text{vap} = 75 \, \text{J mol}^{-1} \text{K}^{-1}$
$T = \frac{30 \times 10^3}{75} = 400 \, \text{K}$
Final Answer: (400)
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32