Using the relation at equilibrium:
$\Delta G = \Delta H - T\Delta S = 0$
Rearranging for $T$:
$T = \frac{\Delta H}{\Delta S}$
Substitute the given values:
$\Delta H_\text{vap} = 30 \, \text{kJ/mol} = 30 \times 10^3 \, \text{J/mol}$, $\Delta S_\text{vap} = 75 \, \text{J mol}^{-1} \text{K}^{-1}$
$T = \frac{30 \times 10^3}{75} = 400 \, \text{K}$
Final Answer: (400)
A perfect gas (0.1 mol) having \( \bar{C}_V = 1.50 \) R (independent of temperature) undergoes the above transformation from point 1 to point 4. If each step is reversible, the total work done (w) while going from point 1 to point 4 is ____ J (nearest integer) [Given : R = 0.082 L atm K\(^{-1}\)]
A sample of n-octane (1.14 g) was completely burnt in excess of oxygen in a bomb calorimeter, whose heat capacity is 5 kJ K\(^{-1}\). As a result of combustion, the temperature of the calorimeter increased by 5 K. The magnitude of the heat of combustion at constant volume is ___
Match List-I with List-II: List-I