Using the relation at equilibrium:
$\Delta G = \Delta H - T\Delta S = 0$
Rearranging for $T$:
$T = \frac{\Delta H}{\Delta S}$
Substitute the given values:
$\Delta H_\text{vap} = 30 \, \text{kJ/mol} = 30 \times 10^3 \, \text{J/mol}$, $\Delta S_\text{vap} = 75 \, \text{J mol}^{-1} \text{K}^{-1}$
$T = \frac{30 \times 10^3}{75} = 400 \, \text{K}$
Final Answer: (400)
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $