To calculate the change in entropy ($\Delta S$) when heating a gas at constant pressure, we use the thermodynamic relation:
\[
\Delta S = n C_p \ln\left( \frac{T_2}{T_1} \right)
\]
Where:
$n$ = number of moles = 1
$C_p$ = specific heat at constant pressure = $4\ \text{Cal.deg}^{-1}\text{mol}^{-1}$
$T_1 = 200\ \text{K}$, $T_2 = 600\ \text{K}$
Calculate the temperature ratio:
\[
\frac{T_2}{T_1} = \frac{600}{200} = 3
\]
Substitute values into the entropy equation:
\[
\Delta S = 1 \cdot 4 \cdot \ln(3) = 4 \cdot 1.09 = 4.36\ \text{Cal.deg}^{-1}\text{mol}^{-1}
\]
Thus, the entropy change for the given process is:
\[
\boxed{4.36\ \text{Cal.deg}^{-1}\text{mol}^{-1}}
\]