The differential equation is: \[ \sqrt{4 - x^2} \frac{dy}{dx} = \left( \left( \sin^{-1} \left( \frac{x}{2} \right) \right)^2 - y \right) \sin^{-1} \left( \frac{x}{2} \right) \]
Step 2: Rearrange and IntegrateRearranging the terms, we integrate to solve for \( y(x) \): \[ y = \left( \sin^{-1} \left( \frac{x}{2} \right) \right)^2 - 2 + c \cdot e \]
Step 3: Solve for \( c \) Using the Initial ConditionGiven that \( y(2) = \frac{\pi^2}{4} - 2 \), we solve for \( c \): \[ y(2) = \frac{\pi^2}{4} - 2 \implies c = 0 \]
Step 4: Find \( y(0) \)Thus, the value of \( y(0) \) is: \[ y(0) = -2 \]
Final Answer: \( y(0) = -2 \)Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: