The differential equation is: \[ \sqrt{4 - x^2} \frac{dy}{dx} = \left( \left( \sin^{-1} \left( \frac{x}{2} \right) \right)^2 - y \right) \sin^{-1} \left( \frac{x}{2} \right) \]
Step 2: Rearrange and IntegrateRearranging the terms, we integrate to solve for \( y(x) \): \[ y = \left( \sin^{-1} \left( \frac{x}{2} \right) \right)^2 - 2 + c \cdot e \]
Step 3: Solve for \( c \) Using the Initial ConditionGiven that \( y(2) = \frac{\pi^2}{4} - 2 \), we solve for \( c \): \[ y(2) = \frac{\pi^2}{4} - 2 \implies c = 0 \]
Step 4: Find \( y(0) \)Thus, the value of \( y(0) \) is: \[ y(0) = -2 \]
Final Answer: \( y(0) = -2 \)A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: