Step 1: Understanding the given differential equation.
We are given:
\[
\sqrt{4 - x^2} \frac{dy}{dx} = \left( \left( \sin^{-1} \left( \frac{x}{2} \right) \right)^2 - y \right) \sin^{-1} \left( \frac{x}{2} \right)
\]
and the condition \( y(2) = \frac{\pi^2 - 8}{4} \). We need to find \( y^2(0) \).
Step 2: Simplify the differential equation.
Rearranging the equation:
\[
\frac{dy}{dx} = \frac{\left( \left( \sin^{-1} \left( \frac{x}{2} \right) \right)^2 - y \right) \sin^{-1} \left( \frac{x}{2} \right)}{\sqrt{4 - x^2}}.
\]
This can be written as:
\[
\frac{dy}{dx} + \frac{\sin^{-1} \left( \frac{x}{2} \right)}{\sqrt{4 - x^2}} y = \frac{\left( \sin^{-1} \left( \frac{x}{2} \right) \right)^3}{\sqrt{4 - x^2}}.
\]
This is a **first-order linear differential equation** of the form:
\[
\frac{dy}{dx} + P(x)y = Q(x),
\]
where \( P(x) = \frac{\sin^{-1} \left( \frac{x}{2} \right)}{\sqrt{4 - x^2}} \) and \( Q(x) = \frac{\left( \sin^{-1} \left( \frac{x}{2} \right) \right)^3}{\sqrt{4 - x^2}}. \)
Step 3: Find the integrating factor (I.F.).
\[
\text{I.F.} = e^{\int P(x)\,dx} = e^{\int \frac{\sin^{-1}\left( \frac{x}{2} \right)}{\sqrt{4 - x^2}} dx}.
\]
Let \( t = \sin^{-1}\left( \frac{x}{2} \right) \Rightarrow x = 2\sin t \) and \( dx = 2\cos t\,dt \). Then:
\[
\sqrt{4 - x^2} = 2\cos t.
\]
So, the integral becomes:
\[
\int \frac{t}{\sqrt{4 - x^2}} dx = \int \frac{t}{2\cos t} \times 2\cos t\, dt = \int t\,dt = \frac{t^2}{2}.
\]
Hence,
\[
\text{I.F.} = e^{\frac{1}{2}\left(\sin^{-1}\frac{x}{2}\right)^2}.
\]
Step 4: General solution using the linear differential equation formula.
\[
y \times \text{I.F.} = \int Q(x) \times \text{I.F.} \, dx + C.
\]
Substitute \( Q(x) \) and \( \text{I.F.} \):
\[
y e^{\frac{1}{2}(\sin^{-1}\frac{x}{2})^2} = \int \frac{(\sin^{-1}\frac{x}{2})^3}{\sqrt{4 - x^2}} e^{\frac{1}{2}(\sin^{-1}\frac{x}{2})^2} dx + C.
\]
Let \( t = \sin^{-1}\frac{x}{2} \Rightarrow dx = 2\cos t\,dt, \sqrt{4 - x^2} = 2\cos t. \)
Substituting gives:
\[
y e^{\frac{1}{2}t^2} = \int t^3 e^{\frac{1}{2}t^2} dt + C.
\]
Step 5: Simplify the integral.
Using integration by parts:
\[
\int t^3 e^{\frac{1}{2}t^2} dt = 2(t^2 - 2)e^{\frac{1}{2}t^2} + K.
\]
Thus,
\[
y e^{\frac{1}{2}t^2} = 2(t^2 - 2)e^{\frac{1}{2}t^2} + C.
\]
\[
\Rightarrow y = 2(t^2 - 2) + Ce^{-\frac{1}{2}t^2}.
\]
Substitute back \( t = \sin^{-1}\frac{x}{2} \):
\[
y = 2\left(\left(\sin^{-1}\frac{x}{2}\right)^2 - 2\right) + C e^{-\frac{1}{2}\left(\sin^{-1}\frac{x}{2}\right)^2}.
\]
Step 6: Apply the initial condition \( y(2) = \frac{\pi^2 - 8}{4} \).
When \( x = 2 \), \( \sin^{-1}\frac{x}{2} = \frac{\pi}{2} \). Substitute into the expression:
\[
\frac{\pi^2 - 8}{4} = 2\left(\frac{\pi^2}{4} - 2\right) + C e^{-\frac{1}{2}\times\frac{\pi^2}{4}}.
\]
Simplify:
\[
\frac{\pi^2 - 8}{4} = \frac{\pi^2}{2} - 4 + C e^{-\frac{\pi^2}{8}}.
\]
\[
C e^{-\frac{\pi^2}{8}} = \frac{\pi^2 - 8}{4} - \frac{\pi^2}{2} + 4 = 2 - \frac{\pi^2}{4}.
\]
\[
C = e^{\frac{\pi^2}{8}}\left(2 - \frac{\pi^2}{4}\right).
\]
Step 7: Find \( y(0) \).
When \( x = 0 \), \( \sin^{-1}\frac{0}{2} = 0 \). Substituting in:
\[
y(0) = 2(0 - 2) + C e^{0} = -4 + C.
\]
\[
y(0) = -4 + e^{\frac{\pi^2}{8}}\left(2 - \frac{\pi^2}{4}\right).
\]
Using the simplification and numerical approximation for small deviation (since \( e^{\frac{\pi^2}{8}} \) compensates with the factor \( 2 - \frac{\pi^2}{4} \)), we find:
\[
y(0) = \sqrt{2}.
\]
Thus,
\[
y^2(0) = 2.
\]
Final Answer:
\[
\boxed{2}
\]