If \(A_2B \;\text{is} \;30\%\) ionised in an aqueous solution, then the value of van’t Hoff factor \( i \) is:
1.24 g of \(AX_2\) (molar mass 124 g mol\(^{-1}\)) is dissolved in 1 kg of water to form a solution with boiling point of 100.105°C, while 2.54 g of AY_2 (molar mass 250 g mol\(^{-1}\)) in 2 kg of water constitutes a solution with a boiling point of 100.026°C. \(Kb(H)_2\)\(\text(O)\) = 0.52 K kg mol\(^{-1}\). Which of the following is correct?
A current-carrying rectangular loop PQRS is made of uniform wire. The length PR = QS = \( 5 \, \text{cm} \) and PQ = RS = \( 100 \, \text{cm} \). If the ammeter current reading changes from \( I \) to \( 2I \), the ratio of magnetic forces per unit length on the wire PQ due to wire RS in the two cases respectively \( F^{I}_{PQ} : F^{2I}_{PQ} \) is:
A real gas within a closed chamber at \( 27^\circ \text{C} \) undergoes the cyclic process as shown in the figure. The gas obeys the equation \( PV^3 = RT \) for the path A to B. The net work done in the complete cycle is (assuming \( R = 8 \, \text{J/molK} \)):
Figure shows a part of an electric circuit. The potentials at points \( a, b, \text{and} \, c \) are \( 30 \, \text{V}, 12 \, \text{V}, \, \text{and} \, 2 \, \text{V} \), respectively. The current through the \( 20 \, \Omega \) resistor will be: