The energy of the ejected photoelectrons is given by the photoelectric equation:
\( K.E. = h\nu - \phi \),
where \( h\nu \) is the energy of the incident photons and \( \phi \) is the work function of the material.
Given:
\( h\nu = 4.13 \, \text{eV}, \quad \phi = 3.13 \, \text{eV} \),
the maximum kinetic energy of the ejected photoelectrons is:
\( K.E. = 4.13 \, \text{eV} - 3.13 \, \text{eV} = 1 \, \text{eV} \).
Thus, the correct answer is Option (2).
Which of the following statements are correct, if the threshold frequency of caesium is $ 5.16 \times 10^{14} \, \text{Hz} $?
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: