Step 1: Understanding the Photoelectric Effect.
The maximum kinetic energy \( K_{max} \) of the emitted electrons is given by Einstein's photoelectric equation: \[ K_{max} = \frac{hc}{\lambda_i} - \phi. \] The work function \( \phi \) is related to the threshold wavelength \( \lambda_0 \) by \( \phi = \frac{hc}{\lambda_0} \). Substituting this into the equation for \( K_{max} \): \[ K_{max} = \frac{hc}{\lambda_i} - \frac{hc}{\lambda_0} = hc \left( \frac{1}{\lambda_i} - \frac{1}{\lambda_0} \right). \quad \cdots (1) \]
Step 2: Understanding de-Broglie Wavelength.
The de-Broglie wavelength \( \lambda_e \) of an electron with momentum \( p \) is given by \( \lambda_e = \frac{h}{p} \).
The kinetic energy \( K_{max} \) of the emitted electron is related to its momentum \( p \) and mass \( m \) by \( K_{max} = \frac{p^2}{2m} \), so \( p = \sqrt{2m K_{max}} \).
Substituting this into the de-Broglie wavelength equation: \[ \lambda_e = \frac{h}{\sqrt{2m K_{max}}}. \quad \cdots (2) \]
Step 3: Combining the two equations.
Substitute the expression for \( K_{max} \) from equation (1) into equation (2): \[ \lambda_e = \frac{h}{\sqrt{2m \left( hc \left( \frac{1}{\lambda_i} - \frac{1}{\lambda_0} \right) \right)}}. \]
Step 4: Simplifying the expression.
\[ \lambda_e = \frac{h}{\sqrt{2mch \left( \frac{1}{\lambda_i} - \frac{1}{\lambda_0} \right)}}. \] Looking closely at the options, option (1) is: \[ \lambda_e = \frac{h}{\sqrt{2mc \left( \frac{h}{\lambda_i} - \frac{h}{\lambda_0} \right)}} \] This can be simplified as: \[ \lambda_e = \frac{h}{\sqrt{2mch \left( \frac{1}{\lambda_i} - \frac{1}{\lambda_0} \right)}} \] This matches the derived expression.
Therefore, option (1) is the correct answer.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: