In chromatography, the first eluted compounds are less polar with higher Rf val ues while slower moving or retained compounds are typically more polar with lower Rf values indicating stronger interaction with the stationary phase
In column chromatography, compounds are separated based on:
Compounds that are less strongly adsorbed to the stationary phase and more soluble in the mobile phase elute faster.
The retention factor (\( R_f \)) is defined as:
\[ R_f = \frac{\text{Distance covered by substance from base line}}{\text{Total distance covered by solvent from base line}} \]
Compound 'B' has a low \( R_f \), indicating stronger adsorption to the stationary phase.
The correct increasing order of stability of the complexes based on \( \Delta \) value is:
Match List-I with List-II: List-I
List I (Molecule) | List II (Number and types of bond/s between two carbon atoms) | ||
A. | ethane | I. | one σ-bond and two π-bonds |
B. | ethene | II. | two π-bonds |
C. | carbon molecule, C2 | III. | one σ-bonds |
D. | ethyne | IV. | one σ-bond and one π-bond |
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]