Step 1: The formula for elastic potential energy stored in a stretched wire is:
\( U = \frac{1}{2} \cdot \frac{F^2 L}{A Y} \), where:
- \( F \) is the force (here, equal to weight \( W \))
- \( L \) is the length of the wire
- \( A \) is the cross-sectional area
- \( Y \) is Young's modulus
Step 2: There are two wires in series:
- Wire 1: radius \( R \), length \( L \), area \( A_1 = \pi R^2 \)
- Wire 2: radius \( 2R \), length \( L \), area \( A_2 = \pi (2R)^2 = 4\pi R^2 \)
Step 3: Since they are in series, both wires experience the same force \( F = W \).
Compute the energy in each wire using the formula:
\( U = \frac{1}{2} \cdot \frac{W^2 L}{A Y} \)
Step 4: Energy stored in wire 1 (thin wire):
\( U_1 = \frac{1}{2} \cdot \frac{W^2 L}{\pi R^2 Y} \)
Step 5: Energy stored in wire 2 (thicker wire):
\( U_2 = \frac{1}{2} \cdot \frac{W^2 L}{4\pi R^2 Y} \)
Step 6: Total energy in the system:
\( U = U_1 + U_2 = \frac{1}{2} \cdot \frac{W^2 L}{\pi R^2 Y} + \frac{1}{2} \cdot \frac{W^2 L}{4\pi R^2 Y} \)
Take common factors:
\( U = \frac{W^2 L}{2\pi R^2 Y} \left(1 + \frac{1}{4}\right) = \frac{W^2 L}{2\pi R^2 Y} \cdot \frac{5}{4} = \frac{5W^2 L}{8\pi R^2 Y} \)
Final Answer: \( \frac{5W^2 L}{8\pi R^2 Y} \)