To find the ratio of the maximum heights attained by the two projectiles, we start with the formula for maximum height reached by a projectile: H = \( \frac{v_0^2 \sin^2 \theta}{2g} \) where \( v_0 \) is the initial velocity, \( \theta \) is the angle of projection, and \( g \) is the acceleration due to gravity.
The two angles are \( (45^\circ - \alpha) \) and \( (45^\circ + \alpha) \). Therefore, the maximum heights H1 and H2 for the two angles are:
H1 = \( \frac{v_0^2 \sin^2 (45^\circ - \alpha)}{2g} \)
H2 = \( \frac{v_0^2 \sin^2 (45^\circ + \alpha)}{2g} \)
The ratio of the maximum heights is:
\(\frac{H_1}{H_2} = \frac{\sin^2 (45^\circ - \alpha)}{\sin^2 (45^\circ + \alpha)}\)
Using the trigonometric identity \(\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B\), we have:
\(\sin (45^\circ - \alpha) = \sin 45^\circ \cos \alpha - \cos 45^\circ \sin \alpha = \frac{\sqrt{2}}{2}(\cos \alpha - \sin \alpha)\)
\(\sin (45^\circ + \alpha) = \sin 45^\circ \cos \alpha + \cos 45^\circ \sin \alpha = \frac{\sqrt{2}}{2}(\cos \alpha + \sin \alpha)\)
Thus,
\(\frac{H_1}{H_2} = \left(\frac{\cos \alpha - \sin \alpha}{\cos \alpha + \sin \alpha}\right)^2\)
By multiplying numerator and denominator by \(\frac{1}{(\cos \alpha)^2}\), we have:
\(\frac{1 - \frac{2\sin \alpha \cos \alpha}{1+\sin^2 \alpha}}{1 + \frac{2\sin \alpha \cos \alpha}{1+\sin^2 \alpha}}\)
Using \(\sin 2\alpha = 2\sin \alpha \cos \alpha\), the expression becomes:
\(\frac{1-\sin 2\alpha}{1+\sin 2\alpha}\)
Thus, the ratio of the maximum heights is \( \frac{1-\sin 2\alpha}{1+\sin 2\alpha} \).
A particle is projected at an angle of \( 30^\circ \) from horizontal at a speed of 60 m/s. The height traversed by the particle in the first second is \( h_0 \) and height traversed in the last second, before it reaches the maximum height, is \( h_1 \). The ratio \( \frac{h_0}{h_1} \) is __________. [Take \( g = 10 \, \text{m/s}^2 \)]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: