Step 1: Let the height of each pole be $h$ m.
Let the distance of the point from the pole at $60^\circ$ be $x$ m,
then the distance from the other pole is $(80 - x)$ m.
Step 2: Apply trigonometric ratios.
For the first pole,
\[
\tan 60^\circ = \dfrac{h}{x} \Rightarrow \sqrt{3} = \dfrac{h}{x} \Rightarrow h = \sqrt{3}x
\]
For the second pole,
\[
\tan 30^\circ = \dfrac{h}{80 - x} \Rightarrow \dfrac{1}{\sqrt{3}} = \dfrac{h}{80 - x} \Rightarrow h = \dfrac{80 - x}{\sqrt{3}}
\]
Step 3: Equate both values of $h$.
\[
\sqrt{3}x = \dfrac{80 - x}{\sqrt{3}}
\Rightarrow 3x = 80 - x
\Rightarrow 4x = 80
\Rightarrow x = 20
\]
Step 4: Find the height.
\[
h = \sqrt{3}x = \sqrt{3} \times 20 = 20 \times 1.732 = 34.64 \, \text{m}
\]
Step 5: Conclusion.
Hence, the height of each pole is 34.6 m, and the distances from the point are 20 m and 60 m respectively.