The shadow of a tower on level ground is $30\ \text{m}$ longer when the sun's altitude is $30^\circ$ than when it is $60^\circ$. Find the height of the tower. (Use $\sqrt{3}=1.732$.)
Let the height of the tower be $h$. For an altitude angle $\alpha$, the shadow length is $h\cot\alpha$.
Shadow at $30^\circ$: $h\cot30^\circ=h\sqrt{3}$.
Shadow at $60^\circ$: $h\cot60^\circ=\dfrac{h}{\sqrt{3}}$.
Given: $h\sqrt{3}-\dfrac{h}{\sqrt{3}}=30 $$\Rightarrow$$ h\left(\dfrac{3-1}{\sqrt{3}}\right)=30 $$\Rightarrow$$ h\cdot\dfrac{2}{\sqrt{3}}=30$.
$\Rightarrow\ h=15\sqrt{3}\ \text{m}=15(1.732)\ \text{m}=25.98\ \text{m}\ (\approx 26\ \text{m}).$
\[ \boxed{h=15\sqrt{3}\ \text{m}\ \approx\ 26\ \text{m}} \]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.