Step 1: Use \( \tan \theta = \frac{\text{opposite}}{\text{adjacent}} \) Let the horizontal distances of cars from the base be \(x\) and \(y\). For angle \(30^\circ\): \[ \tan 30^\circ = \frac{75}{x} \Rightarrow \frac{1}{\sqrt{3}} = \frac{75}{x} \Rightarrow x = 75\sqrt{3} \] For angle \(45^\circ\): \[ \tan 45^\circ = \frac{75}{y} \Rightarrow 1 = \frac{75}{y} \Rightarrow y = 75 \]
Step 2: Total distance between cars:
\[ \text{Total distance} = x + y = 75\sqrt{3} + 75 = 75(\sqrt{3} + 1) \]
The shadow of a tower on level ground is $30\ \text{m}$ longer when the sun's altitude is $30^\circ$ than when it is $60^\circ$. Find the height of the tower. (Use $\sqrt{3}=1.732$.)