Let the height of the poles be \( h \), and the distance from the point on the road to the first pole be \( x_1 \) and to the second pole be \( x_2 \).
Step 1: From the first pole:
\[
\tan(60^\circ) = \frac{h}{x_1}
\]
\[
\sqrt{3} = \frac{h}{x_1} \Rightarrow h = \sqrt{3} \cdot x_1
\]
Step 2: From the second pole:
\[
\tan(30^\circ) = \frac{h}{x_2}
\]
\[
\frac{1}{\sqrt{3}} = \frac{h}{x_2} \Rightarrow h = \frac{x_2}{\sqrt{3}}
\]
Since the total distance between the poles is 80 meters:
\[
x_1 + x_2 = 80
\]
Now substitute the expression for \( h \) from both equations:
\[
\sqrt{3} \cdot x_1 = \frac{x_2}{\sqrt{3}} \Rightarrow 3 \cdot x_1 = x_2
\]
\[
x_1 + 3 \cdot x_1 = 80 \Rightarrow 4 \cdot x_1 = 80 \Rightarrow x_1 = 20
\]
Now, substitute \( x_1 = 20 \) into \( h = \sqrt{3} \cdot x_1 \):
\[
h = \sqrt{3} \cdot 20 \Rightarrow h = 20\sqrt{3} \Rightarrow h \approx 34.64 \, \text{meters}
\]
Thus, the height of the poles is approximately \( 34.64 \, \text{meters} \), and the distance from the point to the first pole is 20 meters, and to the second pole is 60 meters.