Step 1: Write the sum formula of an A.P.
For an A.P. with first term $a$ and common difference $d$,
\[
S_n=\frac{n}{2}\big(2a+(n-1)d\big).
\]
Step 2: Form equations from given sums.
For $n=9$:
\[
S_9=\frac{9}{2}(2a+8d)=81 $\Rightarrow$ 9(2a+8d)=162 $\Rightarrow$ 2a+8d=18 $\Rightarrow$ a+4d=9.\tag{1}
\]
For $n=17$:
\[
S_{17}=\frac{17}{2}(2a+16d)=289 $\Rightarrow$ 17(2a+16d)=578 $\Rightarrow$ 2a+16d=34 $\Rightarrow$ a+8d=17.\tag{2}
\]
Step 3: Solve (1) and (2).
Subtract (1) from (2): $(a+8d)-(a+4d)=17-9 $\Rightarrow$ 4d=8 $\Rightarrow$ d=2$.
Substitute in (1): $a+4(2)=9 $\Rightarrow$ a+8=9 $\Rightarrow$ a=1$.
\boxed{a=1, d=2.}
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.
Find mean of the following frequency table: