Step 1: Write the sum formula of an A.P.
For an A.P. with first term $a$ and common difference $d$,
\[
S_n=\frac{n}{2}\big(2a+(n-1)d\big).
\]
Step 2: Form equations from given sums.
For $n=9$:
\[
S_9=\frac{9}{2}(2a+8d)=81 $\Rightarrow$ 9(2a+8d)=162 $\Rightarrow$ 2a+8d=18 $\Rightarrow$ a+4d=9.\tag{1}
\]
For $n=17$:
\[
S_{17}=\frac{17}{2}(2a+16d)=289 $\Rightarrow$ 17(2a+16d)=578 $\Rightarrow$ 2a+16d=34 $\Rightarrow$ a+8d=17.\tag{2}
\]
Step 3: Solve (1) and (2).
Subtract (1) from (2): $(a+8d)-(a+4d)=17-9 $\Rightarrow$ 4d=8 $\Rightarrow$ d=2$.
Substitute in (1): $a+4(2)=9 $\Rightarrow$ a+8=9 $\Rightarrow$ a=1$.
\boxed{a=1, d=2.}