Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Let the total frequency be $N=5+25+25+p+7=62+p$. Median = 24, which lies in class $20$--$30$. Thus median class $=20$--$30$, with $l=20,\ h=10,\ f=25,\ c_f=30$ (cumulative frequency before 20--30). Formula: \[ \text{Median} = l + \left(\frac{\frac{N}{2}-c_f}{f}\right)h \] Substitute values: \[ 24 = 20 + \left(\frac{\frac{62+p}{2}-30}{25}\right)\times 10 \] \[ 24 = 20 + \frac{(31+\tfrac{p}{2}-30)}{25}\times 10 \] \[ 24 = 20 + \frac{(1+\tfrac{p}{2})}{25}\times 10 \] \[ 24-20 = \frac{10(1+\tfrac{p}{2})}{25} \] \[ 4 = \frac{10+5p}{25} \] \[ 100 = 10 + 5p \] \[ 5p = 90 \Rightarrow p=18 \] \[ \boxed{p=18} \]
Median class of the following frequency distribution will be:
\[ \begin{array}{|c|c|} \hline \text{Class Interval} & \text{Frequency} \\ \hline 0-10 & 7 \\ \hline 10-20 & 12 \\ \hline 20-30 & 18 \\ \hline 30-40 & 15 \\ \hline 40-50 & 10 \\ \hline 50-60 & 3 \\ \hline \end{array} \]
The median class of the following frequency distribution will be:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-Interval} & \text{$0$--$10$} & \text{$10$--$20$} & \text{$20$--$30$} & \text{$30$--$40$} & \text{$40$--$50$} \\ \hline \text{Frequency} & \text{$7$} & \text{$8$} & \text{$15$} & \text{$10$} & \text{$5$} \\ \hline \end{array}\]
The following data shows the number of family members living in different bungalows of a locality:
Number of Members | 0−2 | 2−4 | 4−6 | 6−8 | 8−10 | Total |
---|---|---|---|---|---|---|
Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
If the median number of members is found to be 5, find the values of p and q.
The population of lions was noted in different regions across the world in the following table:
Number of lions | Number of regions |
---|---|
0–100 | 2 |
100–200 | 5 |
200–300 | 9 |
300–400 | 12 |
400–500 | x |
500–600 | 20 |
600–700 | 15 |
700–800 | 10 |
800–900 | y |
900–1000 | 2 |
Total | 100 |
If the median of the given data is 525, find the values of x and y.
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.
Find mean of the following frequency table: