Step 1: Define the random variable \( x \). \( x \) represents the number of defective oranges drawn.
Step 2: Determine probabilities for \( x \). \[ P(x=0) = \frac{\binom{7}{2}}{\binom{10}{2}} = \frac{21}{45} = \frac{7}{15} \] \[ P(x=1) = \frac{\binom{3}{1} \binom{7}{1}}{\binom{10}{2}} = \frac{21}{45} = \frac{7}{15} \] \[ P(x=2) = \frac{\binom{3}{2} \binom{7}{0}}{\binom{10}{2}} = \frac{3}{45} = \frac{1}{15} \]
Step 3: Calculate expected value \( E(x) \). \[ E(x) = 0 \cdot \frac{7}{15} + 1 \cdot \frac{7}{15} + 2 \cdot \frac{1}{15} = \frac{7}{15} + \frac{2}{15} = \frac{9}{15} = \frac{3}{5} \]
Step 4: Calculate expected value \( E(x^2) \). \[ E(x^2) = 0^2 \cdot \frac{7}{15} + 1^2 \cdot \frac{7}{15} + 2^2 \cdot \frac{1}{15} = 0 + \frac{7}{15} + \frac{4}{15} = \frac{11}{15} \]
Step 5: Calculate the variance \({Var}(x)\). \[ {Var}(x) = E(x^2) - [E(x)]^2 = \frac{11}{15} - \left(\frac{3}{5}\right)^2 = \frac{11}{15} - \frac{9}{25} = \frac{55}{75} - \frac{27}{75} = \frac{28}{75} \]
Let the mean and variance of 7 observations 2, 4, 10, x, 12, 14, y, where x>y, be 8 and 16 respectively. Two numbers are chosen from \(\{1, 2, 3, x-4, y, 5\}\) one after another without replacement, then the probability, that the smaller number among the two chosen numbers is less than 4, is:
If the mean and the variance of the data 
are $\mu$ and 19 respectively, then the value of $\lambda + \mu$ is
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to