Step 1: Define the random variable \( x \). \( x \) represents the number of defective oranges drawn.
Step 2: Determine probabilities for \( x \). \[ P(x=0) = \frac{\binom{7}{2}}{\binom{10}{2}} = \frac{21}{45} = \frac{7}{15} \] \[ P(x=1) = \frac{\binom{3}{1} \binom{7}{1}}{\binom{10}{2}} = \frac{21}{45} = \frac{7}{15} \] \[ P(x=2) = \frac{\binom{3}{2} \binom{7}{0}}{\binom{10}{2}} = \frac{3}{45} = \frac{1}{15} \]
Step 3: Calculate expected value \( E(x) \). \[ E(x) = 0 \cdot \frac{7}{15} + 1 \cdot \frac{7}{15} + 2 \cdot \frac{1}{15} = \frac{7}{15} + \frac{2}{15} = \frac{9}{15} = \frac{3}{5} \]
Step 4: Calculate expected value \( E(x^2) \). \[ E(x^2) = 0^2 \cdot \frac{7}{15} + 1^2 \cdot \frac{7}{15} + 2^2 \cdot \frac{1}{15} = 0 + \frac{7}{15} + \frac{4}{15} = \frac{11}{15} \]
Step 5: Calculate the variance \({Var}(x)\). \[ {Var}(x) = E(x^2) - [E(x)]^2 = \frac{11}{15} - \left(\frac{3}{5}\right)^2 = \frac{11}{15} - \frac{9}{25} = \frac{55}{75} - \frac{27}{75} = \frac{28}{75} \]
Let the mean and variance of 7 observations 2, 4, 10, x, 12, 14, y, where x>y, be 8 and 16 respectively. Two numbers are chosen from \(\{1, 2, 3, x-4, y, 5\}\) one after another without replacement, then the probability, that the smaller number among the two chosen numbers is less than 4, is:
If the mean and the variance of the data 
are $\mu$ and 19 respectively, then the value of $\lambda + \mu$ is
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 