The initial force of repulsion between \( P \) and \( S \) is:
\[F_{PS} \propto Q^2\]
\[F_{PS} = 16 \, \text{N}\]
1. When the uncharged sphere \( R \) is brought in contact with \( P \), the charge on \( P \) and \( R \) redistributes equally because they are identical spheres. Thus, after contact with \( P \):
\[\text{Charge on each of } P \text{ and } R = \frac{Q}{2}\]
2. Next, \( R \) is brought in contact with \( S \), and the charge will again redistribute equally between \( R \) and \( S \). After this contact:
\[\text{Charge on each of } S \text{ and } R = \frac{3Q}{4}\]
Now, \( P \) has a charge of \( \frac{Q}{2} \) and \( S \) has a charge of \( \frac{3Q}{4} \). The new force of repulsion between \( P \) and \( S \) is:
\[F_{PS} \propto \frac{Q}{2} \times \frac{3Q}{4} = \frac{3Q^2}{8}\]
Since the initial force \( F_{PS} \) was 16 N, we have:
\[F_{PS} = \frac{3}{8} \times 16 = 6 \, \text{N}\]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).