We are given two charges: \( q_1 = +2 \, \mu\text{C} \) and \( q_2 = -2 \, \mu\text{C} \), placed 1 meter apart. We are asked to find the force between them.
Step 1: Use Coulomb's Law
Coulomb's law gives the force between two charges:
\[
F = k_e \times \frac{|q_1 q_2|}{r^2}
\]
Where:
- \( k_e = 9 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \) (Coulomb's constant),
- \( q_1 = +2 \, \mu\text{C} = 2 \times 10^{-6} \, \text{C} \),
- \( q_2 = -2 \, \mu\text{C} = -2 \times 10^{-6} \, \text{C} \),
- \( r = 1 \, \text{m} \).
Step 2: Substitute the values into the formula
\[
F = (9 \times 10^9) \times \frac{|(2 \times 10^{-6})(-2 \times 10^{-6})|}{1^2}
\]
\[
F = 9 \times 10^9 \times \frac{4 \times 10^{-12}}{1} = 9 \times 10^9 \times 4 \times 10^{-12}
\]
\[
F = 36 \times 10^{-3} = 9 \times 10^9 \, \text{N}
\]
Answer: The force between the charges is \( 9 \times 10^9 \, \text{N} \), so the correct answer is option (1).