\(\frac P{180} \times2πR\)
\(\frac{P}{180}\times π R^2\)
\(\frac P{360} \times 2π R\)
\(\frac P{ 270} \times 2π R^2\)
We know that area of sector of angle θ = \(\frac{θ}{360°} \times \pi r^2\)
Area of sector of angle P =\(\frac P { 360°}\times (\pi R^2)\) =\( (\frac{P}{720°)} (2 \pi R^2)\)
Hence, (D) is the correct answer.
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
In the adjoining figure, $\triangle CAB$ is a right triangle, right angled at A and $AD \perp BC$. Prove that $\triangle ADB \sim \triangle CDA$. Further, if $BC = 10$ cm and $CD = 2$ cm, find the length of AD.