It can be observed that these designs are segments of the circle.
Consider segment APB. Chord AB is a side of the hexagon.
Each chord will substitute \(\frac{360°}6\) = 60° at the centre of the circle.
In ΔOAB,
∠OAB = ∠OBA (As OA = OB)
∠AOB = 60°
∠OAB + ∠OBA + ∠AOB = 180°
2∠OAB = 180° - 60° = 120°
∠OAB = 60°
Therefore, ΔOAB is an equilateral triangle.
Area of ΔOAB = \(\frac{\sqrt3 }4 \times (side)^2 \)
= \(\frac{\sqrt3}4 \times (28)^2\) =\(196 \sqrt3\) = \(196 \times 1.7 \)= 333.2 cm\(^2\)
Area of sector OAPB = \(\frac{60°}{ 360°} \times \pi r^2\)
= \(\frac{1}6 \times \frac{22}7 \times 28 \times 28\) = \(\frac{1232}3\) cm\(^2\)
Area of segment APB = Area of sector OAPB - Area of ΔOAB
∴ Area of designs = \(6 \times (\frac{1232}3 - 333.2) \)cm\(^2\)
= (2464 - 1999.2) cm\(^2\)
= 464.8 cm\(^2\)
Cost of making 1 cm\(^2\) designs = Rs 0.35
Cost of making 464.76 cm\(^2\) designs = \(464.8 \times 0.35\) = Rs 162.68
Therefore, the cost of making such designs is Rs 162.68.
आप नव्या / भव्य हैं। विद्यालय में नामांकन के समय आपकी जन्मतिथि गलत दर्ज हो गई है। दसवीं के पंजीकरण से पहले आप इसे सुधरवाना चाहते हैं। जन्मतिथि में सुधार हेतु निवेदन करते हुए प्रधानाचार्य को लगभग 80 शब्दों में एक ई-मेल लिखिए।
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
उनके द्वारा मुझे सच्चाई का अहसास कराया गया । (कर्तृवाच्य में बदलिए)