Radius (r) of circle = \(15\) cm
Area of sector \(OPRQ\) = \(\frac{60°}{360°} \times \pi r^2\)
= \(\frac{1}{6} \times 3.14 \times (15)^2\)
= \(117.75\,cm^2\)
In \(∆OPQ\),
\(∠OPQ = ∠OQP\) (As \(OP = OQ\))
\(∠OPQ + ∠OQP + ∠POQ = 180°\)
\(2∠OPQ = 120°\)
\(∠OPQ = 60°\)
\(∆OPQ\) is an equilateral triangle.
Area of \(∆OPQ\) = \(\frac{\sqrt3 } 4 \times (side)^2\)
= \(\frac{\sqrt3 } 4 \times (15)^2\)
= \(\frac{225\sqrt3 } 4 cm^2\)
= \(56.25 \sqrt3\)
= \(97. 3125 \, cm^2\)
Area of segment \(PRQ\) = Area of sector \(OPRQ\) − Area of \(∆OPQ\)
= \(117.75 − 97.3125\) = \(20.4375\) \(cm^2\)
Area of major segment \(PSQ\) = Area of circle − Area of segment \(PRQ\)
= \(\pi (15)^2 - 20.4375\)
= \(3.14 \times 225 - 20.4375\)
= \(706.5 - 20.4375\)
= \(686. 0625\) \(cm^2\)
So, the answer is \(686. 0625\ cm^2\).