Given:
In right-angled triangle ABC, right-angled at A.
\(\sin B = \dfrac{1}{4}\)
Step 1: Use definition of sine
\[
\sin B = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{4}
\]
So, opposite side to angle \(B = 1\), hypotenuse = 4
Step 2: Use Pythagoras theorem to find adjacent side
Let adjacent side = \(x\)
\[
x^2 + 1^2 = 4^2 \Rightarrow x^2 + 1 = 16 \Rightarrow x^2 = 15 \Rightarrow x = \sqrt{15}
\]
Step 3: Use definition of secant
\[
\sec B = \frac{\text{hypotenuse}}{\text{adjacent}} = \frac{4}{\sqrt{15}} = \frac{\sqrt{15}}{4} \text{ (rationalizing the denominator)}
\]
Final Answer:
\[
\sec B = \frac{\sqrt{15}}{4}
\]