Radius (r) of circle = 21 cm
Angle subtended by the given arc = 60°
(i) Length of an arc of a sector of angle θ =\(\frac {\theta }{360^{\degree}} \times 2 \pi r\)
Length of arc ACB =\(\frac{60°}{360 °} \times 2 \times \frac{22}7 \times 21\)
= \(\frac{1}{6} \times 2 \times {22} \times 3\)
= 22 cm
(ii) Area of sector OACB = \(\frac{60°}{360 °} \times \pi r^2\)
= \(\frac{1}{6} \times \frac{22}7 \times 21\times 21\)
= \(231 cm ^2\)
In ΔOAB,
∠OAB = ∠OBA (As OA = OB)
∠OAB + ∠AOB + ∠OBA = 180°
2∠OAB + 60° = 180°
∠OAB = 60°
Therefore, ΔOAB is an equilateral triangle.
Area of ΔOAB = \(\frac{ \sqrt3 }{4} \times (Side) ^2\)
= \(\frac{ \sqrt3 }{4} \times (22) ^2 = \frac{441 \sqrt 3}{4} \, cm^2\)
(iii) Area of segment ACB = Area of sector OACB - Area of ΔOAB
= \((231 - \frac{441 \sqrt3}{4})\, cm^2\)
Given: a radius \((r) = 21\)cm and an arc angle \((\theta) = 60°\)
Step 1: Find the length of the arc
Length of the arc L:
\(L = \frac{2\pi r \theta}{360^\circ}\)
\(L = \frac{2 \times \pi \times 21 \times 60^\circ}{360^\circ}\)
Using \(\pi = \frac{22}{7}:\)
\(L = \frac{2 \times \frac{22}{7} \times 21 \times 60}{360}\)
\(L = \frac{2 \times 22 \times 21 \times 60}{7 \times 360}\)
\(L = \frac{27720}{2520}L = 22 \text{ cm}\)
Step 2: Find the area of the sector
Area of the sector A:
\(A = \frac{\theta}{360^\circ} \times \pi r^2\)
\(A = \frac{60^\circ}{360^\circ} \times \pi \times 21^2\)
\(A = \frac{1}{6} \times \pi \times 441\)
Using\(\pi = \frac{22}{7}:\)
\(A = \frac{1}{6} \times \frac{22}{7} \times 441\)
\(A = \frac{22 \times 441}{42}\)
\(A = \frac{9702}{42}\)
\(A = 231 \text{ cm}^2\)
Step 3: Find the area of the segment
The area of the segment APB = Area of sector OAPB - Area of triangle OAB
In \(\triangle OAB\), since two sides are equal (radii of the circle), the angles opposite these sides are also equal.
Let \(\angle OAB = \angle OBA = x.\)
Using the sum of angles property of triangles: \(\angle AOB + \angle OAB + \angle OBA = 180^\circ\)
\(60^\circ + x + x = 180^\circ\)
\(60^\circ + 2x = 180^\circ\)
\(2x = 120^\circ\)
\(x = 60^\circ\)
So,\(\angle OAB = \angle OBA = 60^\circ.\)
Therefore,\(\triangle OAB\) is an equilateral triangle.
Area of an equilateral triangle:
\(\text{Area} = \frac{\sqrt{3}}{4} ( \text{side} )^2\)
\(\text{Area} = \frac{\sqrt{3}}{4} \times (21)^2\)
\(\text{Area} = \frac{\sqrt{3}}{4} \times 441\)
\(\text{Area} = 110.25\sqrt{3} \approx 190.95 \text{ cm}^2\)
Area of the segment:
\(\text{Area of the segment} = \text{Area of sector} - \text{Area of triangle}\)
\(\text{Area of the segment} = 231 - 190.95\)
\(\text{Area of the segment} = 40.05 \text{ cm}^2\)
Therefore:
How is the brain protected in our body?
आप नव्या / भव्य हैं। विद्यालय में नामांकन के समय आपकी जन्मतिथि गलत दर्ज हो गई है। दसवीं के पंजीकरण से पहले आप इसे सुधरवाना चाहते हैं। जन्मतिथि में सुधार हेतु निवेदन करते हुए प्रधानाचार्य को लगभग 80 शब्दों में एक ई-मेल लिखिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।