| Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
|---|---|---|---|---|---|---|
| Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Given Data:
| Class | 0–15 | 15–30 | 30–45 | 45–60 | 60–75 | 75–90 |
|---|---|---|---|---|---|---|
| Frequency (f) | 11 | 8 | 15 | 7 | 10 | 9 |
| Mid-value (x) | 7.5 | 22.5 | 37.5 | 52.5 | 67.5 | 82.5 |
| f × x | 82.5 | 180 | 562.5 | 367.5 | 675 | 742.5 |
Step 1: Calculate total frequency and total of f × x
\[ \sum f = 11 + 8 + 15 + 7 + 10 + 9 = 60 \] \[ \sum f x = 82.5 + 180 + 562.5 + 367.5 + 675 + 742.5 = 2610 \]
Step 2: Calculate mean
\[ \bar{x} = \frac{\sum f x}{\sum f} = \frac{2610}{60} = 43.5 \]
Step 3: Find modal class
The highest frequency is 15, corresponding to class 30–45.
Step 4: Calculate mode using formula
\[ \text{Mode} = l + \frac{(f_1 - f_0)}{(2f_1 - f_0 - f_2)} \times h \] Where:
Substitute values:
\[ \text{Mode} = 30 + \frac{15 - 8}{(2 \times 15) - 8 - 7} \times 15 = 30 + \frac{7}{30 - 15} \times 15 = 30 + \frac{7}{15} \times 15 = 30 + 7 = 37 \]
Final Answer:
\[ \text{Mean} = 43.5, \quad \text{Mode} = 37 \]
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the variance of the following frequency distribution:
| Class Interval | ||||
| 0--4 | 4--8 | 8--12 | 12--16 | |
| Frequency | 1 | 2 | 2 | 1 |
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.
‘स्वेतांबर’ समस्तपद का विग्रह कर्मधारय और बहुव्रीहि समास दोनों रूपों में कीजिए।