Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Given Data:
Class | 0–15 | 15–30 | 30–45 | 45–60 | 60–75 | 75–90 |
---|---|---|---|---|---|---|
Frequency (f) | 11 | 8 | 15 | 7 | 10 | 9 |
Mid-value (x) | 7.5 | 22.5 | 37.5 | 52.5 | 67.5 | 82.5 |
f × x | 82.5 | 180 | 562.5 | 367.5 | 675 | 742.5 |
Step 1: Calculate total frequency and total of f × x
\[ \sum f = 11 + 8 + 15 + 7 + 10 + 9 = 60 \] \[ \sum f x = 82.5 + 180 + 562.5 + 367.5 + 675 + 742.5 = 2610 \]
Step 2: Calculate mean
\[ \bar{x} = \frac{\sum f x}{\sum f} = \frac{2610}{60} = 43.5 \]
Step 3: Find modal class
The highest frequency is 15, corresponding to class 30–45.
Step 4: Calculate mode using formula
\[ \text{Mode} = l + \frac{(f_1 - f_0)}{(2f_1 - f_0 - f_2)} \times h \] Where:
Substitute values:
\[ \text{Mode} = 30 + \frac{15 - 8}{(2 \times 15) - 8 - 7} \times 15 = 30 + \frac{7}{30 - 15} \times 15 = 30 + \frac{7}{15} \times 15 = 30 + 7 = 37 \]
Final Answer:
\[ \text{Mean} = 43.5, \quad \text{Mode} = 37 \]
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
आप नव्या / भव्य हैं। विद्यालय में नामांकन के समय आपकी जन्मतिथि गलत दर्ज हो गई है। दसवीं के पंजीकरण से पहले आप इसे सुधरवाना चाहते हैं। जन्मतिथि में सुधार हेतु निवेदन करते हुए प्रधानाचार्य को लगभग 80 शब्दों में एक ई-मेल लिखिए।