Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Given Data:
Class | 0–15 | 15–30 | 30–45 | 45–60 | 60–75 | 75–90 |
---|---|---|---|---|---|---|
Frequency (f) | 11 | 8 | 15 | 7 | 10 | 9 |
Mid-value (x) | 7.5 | 22.5 | 37.5 | 52.5 | 67.5 | 82.5 |
f × x | 82.5 | 180 | 562.5 | 367.5 | 675 | 742.5 |
Step 1: Calculate total frequency and total of f × x
\[ \sum f = 11 + 8 + 15 + 7 + 10 + 9 = 60 \] \[ \sum f x = 82.5 + 180 + 562.5 + 367.5 + 675 + 742.5 = 2610 \]
Step 2: Calculate mean
\[ \bar{x} = \frac{\sum f x}{\sum f} = \frac{2610}{60} = 43.5 \]
Step 3: Find modal class
The highest frequency is 15, corresponding to class 30–45.
Step 4: Calculate mode using formula
\[ \text{Mode} = l + \frac{(f_1 - f_0)}{(2f_1 - f_0 - f_2)} \times h \] Where:
Substitute values:
\[ \text{Mode} = 30 + \frac{15 - 8}{(2 \times 15) - 8 - 7} \times 15 = 30 + \frac{7}{30 - 15} \times 15 = 30 + \frac{7}{15} \times 15 = 30 + 7 = 37 \]
Final Answer:
\[ \text{Mean} = 43.5, \quad \text{Mode} = 37 \]
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]