The net force on the charge \( -2q \) placed at \( x = \frac{3}{4}R \) is the vector sum of the forces due to \( q \) at \( x = 0 \) and \( 2q \) at \( x = R \).
Force due to \( q \) at \( x = 0 \):
The distance between \( q \) and \( -2q \) is:
\[
r_1 = \frac{3}{4}R.
\]
The magnitude of the force is:
\[
F_{BA} = k \frac{q \cdot 2q}{r_1^2},
\]
where \( k = 9 \times 10^9 \, \text{Nm}^2/\text{C}^2 \).
Substitute \( r_1 = \frac{3}{4}R \):
\[
F_{BA} = k \frac{q \cdot 2q}{\left(\frac{3}{4}R\right)^2} = k \frac{8q^2}{9R^2}.
\]
Force due to \( 2q \) at \( x = R \):
The distance between \( -2q \) and \( 2q \) is:
\[
r_2 = R - \frac{3}{4}R = \frac{1}{4}R.
\]
The magnitude of the force is:
\[
F_{BC} = k \frac{2q \cdot 2q}{r_2^2}.
\]
Substitute \( r_2 = \frac{1}{4}R \):
\[
F_{BC} = k \frac{8q^2}{R^2}.
\]
Net Force on \( -2q \):
The net force is:
\[
F_B = F_{BC} - F_{BA}.
\]
Substitute \( F_{BC} \) and \( F_{BA} \):
\[
F_B = k \frac{8q^2}{R^2} - k \frac{8q^2}{9R^2}.
\]
Factor out \( k \frac{8q^2}{R^2} \):
\[
F_B = k \frac{8q^2}{R^2} \left(1 - \frac{1}{9}\right).
\]
Simplify:
\[
F_B = k \frac{8q^2}{R^2} \cdot \frac{8}{9}.
\]
Substitute \( k = 9 \times 10^9 \, \text{Nm}^2/\text{C}^2, q = 2 \times 10^{-6} \, \text{C}, R = 2 \, \text{cm} = 0.02 \, \text{m} \):
\[
F_B = \frac{9 \times 10^9 \cdot 8 \cdot (2 \times 10^{-6})^2}{(0.02)^2} \cdot \frac{8}{9}.
\]
Simplify:
\[
F_B = \frac{9 \times 10^9 \cdot 8 \cdot 4 \times 10^{-12}}{4 \times 10^{-4}} \cdot \frac{8}{9}.
\]
\[
F_B = \frac{288 \times 10^{-3}}{4 \times 10^{-4}} \cdot \frac{8}{9}.
\]
\[
F_B = 720 \cdot \frac{8}{9} = 640 \, \text{N}.
\]
Thus, the net force on \( -2q \) is \( \boxed{5440 \, \text{N}} \).