1. Write the Expression for the Pressure Inside the Bubble:
The pressure inside the bubble \( P_{\text{in}} \) is given by the formula:
\( P_{\text{in}} = P_0 + \rho g h + \frac{2T}{r} \)
Where:
2. Substitute the Given Values into the Formula:
Given:
\( P_0 = 0 \), \( \rho = 1000 \, \text{kg/m}^3 \), \( g = 10 \, \text{m/s}^2 \), \( h = 0.1 \, \text{m} \), \( T = 0.075 \, \text{N/m} \), \( r = 0.001 \, \text{m} \).
Substituting the values into the formula:
\( P_{\text{in}} = 0 + 1000 \times 10 \times 0.1 + \frac{2 \times 0.075}{0.001} \)
\( P_{\text{in}} = 1000 + \frac{0.15}{0.001} \)
\( P_{\text{in}} = 1000 + 150 \)
\( P_{\text{in}} = 1150 \, \text{Pa} \)
Final Answer
Thus, the pressure inside the bubble is greater than the atmospheric pressure by 1150 Pa.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: