Given the variance:
\[
\sigma^2 = 5
\]
If each observation is multiplied by a constant \( k = 2 \), the variance changes as:
\[
\text{Variance } (\sigma^2) = \frac{1}{n} \sum_{i=1}^{20} (x_i - \overline{x})^2
\]
\[
5 = \frac{1}{20} \sum_{i=1}^{20} (x_i - \overline{x})^2
\]
\[
\sum_{i=1}^{20} (x_i - \overline{x})^2 = 100 \quad \text{(i)}
\]
If each observation is multiplied by 2, the new observations are \( y_i \), such that:
\[
y_i = 2x_i \quad \text{or} \quad x_i = \frac{1}{2} y_i
\]
The mean of the new observations is:
\[
\overline{y} = 2 \overline{x}
\]
Substituting \( x_i \) and \( \overline{x} \) into equation (i), we get:
\[
\sum_{i=1}^{20} \left(\frac{1}{2} y_i - \frac{1}{2} \overline{y}\right)^2 = 100
\]
\[
\sum_{i=1}^{20} (y_i - \overline{y})^2 = 400
\]
Thus, the variance of the new observations is:
\[
\frac{1}{20} \times 400 = 20 = 2^2 \times 5
\]