
To find the values of \(a\), we expand the determinant:
\(\begin{vmatrix} 1 & \frac{1}{3} & a + \frac{3}{2} \\ 1 & 1 & a + \frac{1}{3} \\ 2a + 3 & 3a + 1 & 0 \end{vmatrix}.\)
Expanding along the first row:
\(= 1 \cdot \left(1 \cdot 0 - \left(a + \frac{1}{3}\right)(3a + 1)\right) - \frac{3}{2} \cdot \left(1 \cdot 0 - \left(a + \frac{1}{3}\right)(2a + 3)\right) + \left(a + \frac{3}{2}\right) \cdot \left(1 \cdot (3a + 1) - 1 \cdot (2a + 3)\right).\)
Simplifying each term:
\(= -(a + \frac{1}{3})(3a + 1) + \frac{3}{2}(a + \frac{1}{3})(2a + 3) + (a + \frac{3}{2})(a - 2).\)
Expanding the products:
\(= -3a^2 - a - \frac{1}{3} - 3a - \frac{1}{3} + \frac{3}{2}(2a^2 + 3a + \frac{2}{3}).\)
After simplifying, we obtain a quadratic equation in \(a\). Solving for \(a\) gives:
\(a \in (-3, 0).\)
The Correct answer is: (-3, 0)
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: