To find the values of \(a\), we expand the determinant:
\(\begin{vmatrix} 1 & \frac{1}{3} & a + \frac{3}{2} \\ 1 & 1 & a + \frac{1}{3} \\ 2a + 3 & 3a + 1 & 0 \end{vmatrix}.\)
Expanding along the first row:
\(= 1 \cdot \left(1 \cdot 0 - \left(a + \frac{1}{3}\right)(3a + 1)\right) - \frac{3}{2} \cdot \left(1 \cdot 0 - \left(a + \frac{1}{3}\right)(2a + 3)\right) + \left(a + \frac{3}{2}\right) \cdot \left(1 \cdot (3a + 1) - 1 \cdot (2a + 3)\right).\)
Simplifying each term:
\(= -(a + \frac{1}{3})(3a + 1) + \frac{3}{2}(a + \frac{1}{3})(2a + 3) + (a + \frac{3}{2})(a - 2).\)
Expanding the products:
\(= -3a^2 - a - \frac{1}{3} - 3a - \frac{1}{3} + \frac{3}{2}(2a^2 + 3a + \frac{2}{3}).\)
After simplifying, we obtain a quadratic equation in \(a\). Solving for \(a\) gives:
\(a \in (-3, 0).\)
The Correct answer is: (-3, 0)
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: