
To find the values of \(\alpha\) for which the determinant equals zero and lies in the interval, we need to evaluate the determinant of the given 3x3 matrix and set it equal to zero.
The given determinant is:
We perform the determinant expansion using the first row:
\[\begin{vmatrix} 1 & \frac{3}{2} & \alpha + \frac{3}{2} \\ 1 & \frac{1}{3} & \alpha + \frac{1}{3} \\ 2\alpha + 3 & 3\alpha + 1 & 0 \end{vmatrix} = 0\]Expand the determinant:
\[1 \left(\frac{1}{3}(0) - (\alpha + \frac{1}{3})(3\alpha + 1)\right) - \frac{3}{2} \left(1 \cdot 0 - (2\alpha + 3)(\alpha + \frac{1}{3})\right) + (\alpha + \frac{3}{2}) \left(1 \cdot (3\alpha + 1) - (2\alpha + 3) \cdot \frac{1}{3}\right) = 0\]Simplify and solve:
\[ - (\alpha + \frac{1}{3})(3\alpha + 1) + \frac{3}{2} (2\alpha^2 + \frac{7}{3}\alpha + 1) + (\alpha + \frac{3}{2})(\frac{7}{3}\alpha + \frac{1}{3}) = 0 \]
Solving this quadratic equation will give the critical values of \(\alpha\).
After solving, we find that \(\alpha\) lies in the interval \((-3, 0)\).
This is the correct answer from the provided options.
To find the values of \(a\), we expand the determinant:
\(\begin{vmatrix} 1 & \frac{1}{3} & a + \frac{3}{2} \\ 1 & 1 & a + \frac{1}{3} \\ 2a + 3 & 3a + 1 & 0 \end{vmatrix}.\)
Expanding along the first row:
\(= 1 \cdot \left(1 \cdot 0 - \left(a + \frac{1}{3}\right)(3a + 1)\right) - \frac{3}{2} \cdot \left(1 \cdot 0 - \left(a + \frac{1}{3}\right)(2a + 3)\right) + \left(a + \frac{3}{2}\right) \cdot \left(1 \cdot (3a + 1) - 1 \cdot (2a + 3)\right).\)
Simplifying each term:
\(= -(a + \frac{1}{3})(3a + 1) + \frac{3}{2}(a + \frac{1}{3})(2a + 3) + (a + \frac{3}{2})(a - 2).\)
Expanding the products:
\(= -3a^2 - a - \frac{1}{3} - 3a - \frac{1}{3} + \frac{3}{2}(2a^2 + 3a + \frac{2}{3}).\)
After simplifying, we obtain a quadratic equation in \(a\). Solving for \(a\) gives:
\(a \in (-3, 0).\)
The Correct answer is: (-3, 0)
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
