To find the values of \(a\), we expand the determinant:
\(\begin{vmatrix} 1 & \frac{1}{3} & a + \frac{3}{2} \\ 1 & 1 & a + \frac{1}{3} \\ 2a + 3 & 3a + 1 & 0 \end{vmatrix}.\)
Expanding along the first row:
\(= 1 \cdot \left(1 \cdot 0 - \left(a + \frac{1}{3}\right)(3a + 1)\right) - \frac{3}{2} \cdot \left(1 \cdot 0 - \left(a + \frac{1}{3}\right)(2a + 3)\right) + \left(a + \frac{3}{2}\right) \cdot \left(1 \cdot (3a + 1) - 1 \cdot (2a + 3)\right).\)
Simplifying each term:
\(= -(a + \frac{1}{3})(3a + 1) + \frac{3}{2}(a + \frac{1}{3})(2a + 3) + (a + \frac{3}{2})(a - 2).\)
Expanding the products:
\(= -3a^2 - a - \frac{1}{3} - 3a - \frac{1}{3} + \frac{3}{2}(2a^2 + 3a + \frac{2}{3}).\)
After simplifying, we obtain a quadratic equation in \(a\). Solving for \(a\) gives:
\(a \in (-3, 0).\)
The Correct answer is: (-3, 0)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)