>
Exams
>
Mathematics
>
Matrices
>
the value s of k for which the equations x2 kx 21
Question:
The value(s) of k for which the equations x
2
- kx - 21 = 0 and x
2
- 3kx + 35 = 0 will have a common root is/are
WBJEE
Updated On:
Apr 27, 2024
(A)
k
=
±
4
(B)
k
=
±
1
(C)
k
=
±
3
(D) k = 0
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Explanation:
Let
α
be the common roots to the equations
x
2
−
k
x
−
21
=
0
and
x
2
−
3
k
x
+
35
=
0
∴
α
2
−
k
α
−
21
=
0
and
α
2
−
3
k
α
+
35
=
0
Now by cross multiplication method
⇒
α
=
28
k
From (iii) and (iv)
28
×
28
k
2
=
49
⇒
k
2
=
16
⇒
k
=
±
4
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Matrices
Let \[ A = \begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 3 & 4 & 2 \\ 12 & 16 & 8 \\ -6 & -8 & -4 \end{pmatrix}. \] Then, find the matrix $B$ if $AB = C$.
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
Let \( A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \). The determinant of \( A^3 \) is:
BITSAT - 2025
Mathematics
Matrices
View Solution
The matrix $A = \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{5} \end{pmatrix}$ is a/an :
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
If \[ \begin{bmatrix} 3 & -1 \\ 0 & 1 \\ 2 & -3 \end{bmatrix} A = \begin{bmatrix} 2 & -5 \\ -17 \end{bmatrix} \] then find matrix \( A \).
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
If \[ \begin{bmatrix} 2x-1 & 3x \\ 0 & y^2-1 \end{bmatrix} = \begin{bmatrix} x+3 & 12 \\ 0 & 35 \end{bmatrix} \] then the value of \( (x - y) \) is :
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
View More Questions
Questions Asked in WBJEE exam
Which logic gate is represented by the following combination of logic gates?
WBJEE - 2025
Logic gates
View Solution
If \( {}^9P_3 + 5 \cdot {}^9P_4 = {}^{10}P_r \), then the value of \( 'r' \) is:
WBJEE - 2025
permutations and combinations
View Solution
If \( 0 \leq a, b \leq 3 \) and the equation \( x^2 + 4 + 3\cos(ax + b) = 2x \) has real solutions, then the value of \( (a + b) \) is:
WBJEE - 2025
Trigonometric Equations
View Solution
Let \( f(\theta) = \begin{vmatrix} 1 & \cos \theta & -1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1 \end{vmatrix} \). Suppose \( A \) and \( B \) are respectively the maximum and minimum values of \( f(\theta) \). Then \( (A, B) \) is equal to:
WBJEE - 2025
Matrix
View Solution
If \( a, b, c \) are in A.P. and if the equations \( (b - c)x^2 + (c - a)x + (a - b) = 0 \) and \( 2(c + a)x^2 + (b + c)x = 0 \) have a common root, then
WBJEE - 2025
Quadratic Equations
View Solution
View More Questions