If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
To solve the problem, we are given a matrix \( A \) and we need to compute its inverse \( A^{-1} \). Then, using the inverse, solve the system of linear equations.
1. Writing the Matrix Form of the System:
We rewrite the system of equations as a matrix equation \( AX = B \), where:
\( A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} \)
2. Finding the Inverse \( A^{-1} \):
We calculate \( A^{-1} \) using the adjoint method or row reduction. The inverse is given as:
\( A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) \)
Computing the determinant of \( A \):
\[
|A| = 1 \cdot \left((-1)(1) - (-2)(-1)\right) - 2 \cdot \left((-2)(1) - (-2)(0)\right) + 0 \cdot (\text{any}) \\
= 1(-1 - 2) - 2(-2) = -3 + 4 = 1
\]
So the determinant is 1.
Now computing the adjugate (cofactor matrix transpose), we get:
\[
A^{-1} = \begin{bmatrix}
-3 & -2 & -4 \\
-2 & 1 & 2 \\
-1 & -2 & -3
\end{bmatrix}
\]
3. Solving for \( X = A^{-1}B \):
Now multiply \( A^{-1} \) with \( B \):
\[
X = A^{-1}B =
\begin{bmatrix}
-3 & -2 & -4 \\
-2 & 1 & 2 \\
-1 & -2 & -3
\end{bmatrix}
\begin{bmatrix}
10 \\ 8 \\ 7
\end{bmatrix}
\]
Performing the multiplication:
\[
x = -3(10) + (-2)(8) + (-4)(7) = -30 - 16 - 28 = -74 \\
y = -2(10) + 1(8) + 2(7) = -20 + 8 + 14 = 2 \\
z = -1(10) + (-2)(8) + (-3)(7) = -10 - 16 - 21 = -47
\]
Final Answer:
The solution to the system is: \( x = -74, \, y = 2, \, z = -47 \)
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is: