>
Exams
>
Mathematics & Statistics
>
Matrices
>
find x y z if begin bmatrix 5 1 0 1 1 1 end bmatri
Question:
Find x, y, z if
\[ \begin{bmatrix} 5 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \\ 1 & -2 & 3 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x-1 \\ y+1 \\ 2z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \]
Show Hint
When multiplying matrices, always check that the inner dimensions match (e.g., \(m \times n\) times \(n \times p\)). The resulting matrix will have the outer dimensions (\(m \times p\)). Proceed with multiplication step-by-step to avoid errors.
Maharashtra Class XII - 2025
Maharashtra Class XII
Updated On:
Dec 18, 2025
Hide Solution
Verified By Collegedunia
Solution and Explanation
Step 1:
Multiply the first two matrices. \[ \begin{bmatrix} 5 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}_{2\times3} \begin{bmatrix} 0 & 1 & -2 \\ 1 & -2 & 3 \\ -1 & 1 & 1 \end{bmatrix}_{3\times3} = \begin{bmatrix} (0+1-0) & (5-2+0) & (-10+3+0) \\ (0+1-1) & (1-2+1) & (-2+3+1) \end{bmatrix} = \begin{bmatrix} 1 & 3 & -7 \\ 0 & 0 & 2 \end{bmatrix} \]
Step 2:
Multiply the resulting matrix by the column vector. \[ \begin{bmatrix} 1 & 3 & -7 \\ 0 & 0 & 2 \end{bmatrix}_{2\times3} \begin{bmatrix} x-1 \\ y+1 \\ 2z \end{bmatrix}_{3\times1} = \begin{bmatrix} 1(x-1) + 3(y+1) - 7(2z) \\ 0(x-1) + 0(y+1) + 2(2z) \end{bmatrix} = \begin{bmatrix} x - 1 + 3y + 3 - 14z \\ 4z \end{bmatrix} = \begin{bmatrix} x + 3y - 14z + 2 \\ 4z \end{bmatrix} \]
Step 3:
Set the resulting matrix equal to the right-hand side and solve the system of equations. \[ \begin{bmatrix} x + 3y - 14z + 2 \\ 4z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \] From the second row: \( 4z = 1 \implies z = \tfrac{1}{4} \). From the first row: \( x + 3y - 14z + 2 = 2 \implies x + 3y - 14z = 0 \). Substitute \( z = \tfrac{1}{4} \): \[ x + 3y - 14\left(\tfrac{1}{4}\right) = 0 \implies x + 3y - \tfrac{7}{2} = 0 \implies x + 3y = \tfrac{7}{2}. \] The problem does not yield a unique solution for \(x\) and \(y\). The solution is \(z = \tfrac{1}{4}\) and any \(x, y\) that satisfy \(x + 3y = \tfrac{7}{2}\).
Download Solution in PDF
Was this answer helpful?
1
0
Top Questions on Matrices
The matrix $A = \begin{bmatrix} \sqrt{5} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{5} \end{bmatrix}$ is an:
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
If \( A \) is a square matrix of order \( 3 \times 3 \), \( \det A = 3 \), then the value of \( \det(3A^{-1}) \) is:
KCET - 2025
Mathematics
Matrices
View Solution
If \( A \) is a square matrix of order 2 such that \( \text{det} = 4 \), then \( \text{det}(4 \, \text{adj} \, A) \) is equal to:
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
If $A$ and $B$ are two square matrices each of order 3 with $|A| = 3$ and $|B| = 5$, then $|2AB|$ is:
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
If
$$ A = \begin{pmatrix} 2 & 3 \\ 1 & k \end{pmatrix} $$
and
$\det(A) = 7$, find the value of $ k $.
BITSAT - 2025
Mathematics
Matrices
View Solution
View More Questions
Questions Asked in Maharashtra Class XII exam
The terms of Micro Economics and Macro Economics were coined by Norwegian Economist .................
Maharashtra Class XII - 2025
Economics
View Solution
A body of mass 0.8 kg performs linear S.H.M. It experiences a restoring force of 0.4N, when its displacement from mean position is 4 cm. Determine Force constant and Period of S.H.M.
Maharashtra Class XII - 2025
Rotational Motion
View Solution
What is value of B called, when H = 0 is in the hysteresis loop?
Maharashtra Class XII - 2025
Magnetism
View Solution
If \(|\vec{a}| = 5\), \(|\vec{b}| = 13\), and \(|\vec{a} \times \vec{b}| = 25\), then \(|\vec{a} \cdot \vec{b}|\) is equal to ........
Maharashtra Class XII - 2025
Vector Algebra
View Solution
Calculate the electric field intensity at a point just near the surface of a charged plane sheet, measured from its mid-point. [ \( \sigma = 8.85 \, \mu C/m^2 \) ]
Maharashtra Class XII - 2025
Electrostatics
View Solution
View More Questions