In the given arrangement, we observe a Wheatstone Bridge.
For the bridge to be balanced:
\[ \frac{V_{AB}}{V_{AD}} = \frac{V_{BC}}{V_{CD}}. \]
Substituting values from the circuit:
\[ \frac{12}{6 + x} = \frac{0.5}{0.5}. \]
Simplify:
\[ 12(0.5) = (6 + x)(0.5). \]
\[ 6 = 3 + 0.5x \implies x = 6 \, \Omega. \]
Final Answer: \( x = 6 \, \Omega \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: