To determine the unknown resistance in the meter bridge experiment, we analyze the given conditions and use the principle of the meter bridge. Given: 
- Resistance in the left gap, \( R_1 = 9 \, \Omega \) 
- Unknown resistance in the right gap, \( R_2>9 \, \Omega \) 
- When the resistances are interchanged, the balancing point shifts by 10 cm. 
Step 1: Initial Balancing Condition In the meter bridge, the balancing condition is: \[ \frac{R_1}{R_2} = \frac{l}{100 - l} \] where \( l \) is the balancing length from the left end. Initially: \[ \frac{9}{R_2} = \frac{l}{100 - l} \]
Step 2: After Interchanging Resistances When the resistances are interchanged, the new balancing condition is: \[ \frac{R_2}{9} = \frac{l + 10}{90 - l} \] Here, the balancing length shifts by 10 cm, so the new balancing length is \( l + 10 \) cm.
Step 3: Solve the Equations From the initial condition: \[ 9 (100 - l) = R_2 l \] \[ 900 - 9l = R_2 l \] \[ R_2 = \frac{900 - 9l}{l} \] From the interchanged condition: \[ R_2 (90 - l) = 9 (l + 10) \] \[ R_2 = \frac{9 (l + 10)}{90 - l} \]
Step 4: Equate the Two Expressions for \( R_2 \) \[ \frac{900 - 9l}{l} = \frac{9 (l + 10)}{90 - l} \] 
Simplify: \[ (900 - 9l)(90 - l) = 9l (l + 10) \] \[ 81000 - 900l - 810l + 9l^2 = 9l^2 + 90l \] \[ 81000 - 1710l = 90l \] \[ 81000 = 1800l \] \[ l = \frac{81000}{1800} = 45 \, \text{cm} \] Step 5: Calculate \( R_2 \) Using the initial condition: \[ R_2 = \frac{900 - 9 \times 45}{45} = \frac{900 - 405}{45} = \frac{495}{45} = 11 \, \Omega \] Final Answer: \[ \boxed{11 \, \Omega} \] This corresponds to option (3).

If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: