Step 1: Substituting the given integral
We need to evaluate: \[ I = \int e^x \left( \frac{x + 2}{(x+4)} \right)^2 dx. \] Expanding the square term: \[ I = \int e^x \frac{(x+2)^2}{(x+4)^2} dx. \] Step 2: Substituting \( u = x + 4 \)
Let: \[ u = x + 4 \Rightarrow du = dx. \] Rewriting the integral: \[ I = \int e^x \frac{(u - 2)^2}{u^2} dx. \] Expanding: \[ I = \int e^x \left( \frac{u^2 - 4u + 4}{u^2} \right) dx. \] \[ I = \int e^x \left( 1 - \frac{4u}{u^2} + \frac{4}{u^2} \right) dx. \]
Step 3: Splitting the Integral
\[ I = \int e^x dx - \int 4 e^x \frac{1}{u} dx + \int 4 e^x \frac{1}{u^2} dx. \] Solving each term separately: 1. \( \int e^x dx = e^x \). 2. \( \int e^x \frac{1}{u} dx = \int \frac{e^x}{x+4} dx \). 3. \( \int e^x \frac{1}{u^2} dx = -\frac{e^x}{x+4} \).
Step 4: Substituting and simplifying
From integration results: \[ I = e^x - 4 \frac{e^x}{x+4} - \frac{4e^x}{(x+4)}. \] \[ I = \frac{x e^x}{(x+4)} + c. \]
Step 5: Conclusion
Thus, the correct answer is: \[ \frac{x e^x}{(x+4)} + c. \]
Match the following