Step 1: Substituting the given integral
We need to evaluate: \[ I = \int e^x \left( \frac{x + 2}{(x+4)} \right)^2 dx. \] Expanding the square term: \[ I = \int e^x \frac{(x+2)^2}{(x+4)^2} dx. \] Step 2: Substituting \( u = x + 4 \)
Let: \[ u = x + 4 \Rightarrow du = dx. \] Rewriting the integral: \[ I = \int e^x \frac{(u - 2)^2}{u^2} dx. \] Expanding: \[ I = \int e^x \left( \frac{u^2 - 4u + 4}{u^2} \right) dx. \] \[ I = \int e^x \left( 1 - \frac{4u}{u^2} + \frac{4}{u^2} \right) dx. \]
Step 3: Splitting the Integral
\[ I = \int e^x dx - \int 4 e^x \frac{1}{u} dx + \int 4 e^x \frac{1}{u^2} dx. \] Solving each term separately: 1. \( \int e^x dx = e^x \). 2. \( \int e^x \frac{1}{u} dx = \int \frac{e^x}{x+4} dx \). 3. \( \int e^x \frac{1}{u^2} dx = -\frac{e^x}{x+4} \).
Step 4: Substituting and simplifying
From integration results: \[ I = e^x - 4 \frac{e^x}{x+4} - \frac{4e^x}{(x+4)}. \] \[ I = \frac{x e^x}{(x+4)} + c. \]
Step 5: Conclusion
Thus, the correct answer is: \[ \frac{x e^x}{(x+4)} + c. \]
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?