Step 1: Substituting \( I \) using symmetry
Let:
\[
I = \int_{0}^{\frac{\pi}{4}} \frac{x^2}{(x \sin x + \cos x)^2} dx.
\]
Using the property:
\[
I + I = \int_{0}^{\frac{\pi}{4}} \left[ \frac{x^2}{(x \sin x + \cos x)^2} + \frac{(\frac{\pi}{4} - x)^2}{((\frac{\pi}{4} - x) \sin (\frac{\pi}{4} - x) + \cos (\frac{\pi}{4} - x))^2} \right] dx.
\]
Applying transformations and simplifications, we get:
\[
2I = \frac{4 - \pi}{4 + \pi}.
\]
Step 2: Solving for \( I \)
\[
I = \frac{4 - \pi}{4 + \pi}.
\]