(A)The given integral is:
\[
\int_{1}^2 \frac{t^4 + 1}{t^6 + 1} \, dt.
\]
(B)Factorize \( t^6 + 1 \):
\[
t^6 + 1 = (t^2 + 1)(t^4 - t^2 + 1).
\]
Rewrite the integrand:
\[
\frac{t^4 + 1}{t^6 + 1} = \frac{t^4 + 1}{(t^2 + 1)(t^4 - t^2 + 1)}.
\]
(C)Use partial fractions:
\[
\frac{t^4 + 1}{(t^2 + 1)(t^4 - t^2 + 1)} = \frac{A}{t^2 + 1} + \frac{Bt + C}{t^4 - t^2 + 1}.
\]
Multiply through and equate terms to solve for \( A, B, C \). Solving gives:
\[
A = 1, \, B = 0, \, C = \frac{1}{3}.
\]
(D)Substituting, the integral becomes:
\[
\int_{1}^2 \frac{1}{t^2 + 1} \, dt + \frac{1}{3} \int_{1}^2 \frac{t}{t^4 - t^2 + 1} \, dt.
\]
(E)Solve the first term:
\[
\int_{1}^2 \frac{1}{t^2 + 1} \, dt = \tan^{-1}(2) - \tan^{-1}(1).
\]
Since \( \tan^{-1}(1) = \frac{\pi}{4} \), this simplifies to:
\[
\tan^{-1}(2) - \frac{\pi}{4}.
\]
(F) For the second term, perform substitution \( u = t^2 - 1 \), \( du = 2t \, dt \):
\[
\frac{1}{3} \int_{1}^2 \frac{t}{t^4 - t^2 + 1} \, dt = \frac{1}{3} \int \frac{1}{u^2 + 1} \, du = \frac{1}{3} \tan^{-1}(u).
\]
Back-substitute and evaluate:
\[
\frac{1}{3} \left[\tan^{-1}(8) - \tan^{-1}(0)\right] = \frac{1}{3} \tan^{-1}(8).
\]
(G) Combine the results:
\[
\tan^{-1}(2) - \frac{\pi}{4} + \frac{1}{3} \tan^{-1}(8).
\]
Simplify:
\[
\tan^{-1}(2) + \frac{1}{3} \tan^{-1}(8) - \frac{\pi}{3}.
\]