Question:

The value of the integral $ \int\limits^2_{1}e^{x} \left(log_{e} \,x + \frac{x+1}{x}\right)dx$ is

Updated On: Apr 27, 2024
  • $e^2(1 + log_e 2)$
  • $e^2 - e$
  • $e^2(1 + log_e 2) - e$
  • $e^2 -e(1 + log_e 2)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let $/=\int_{1}^{2} e^{x}\left(\log _{\theta} x+\frac{x+1}{x}\right) d x$
$\Rightarrow I=\int_\limits{1}^{2}\left(e^{x} \cdot \log _{e} x+e^{x}+\frac{e^{x}}{x}\right) d x$
$\Rightarrow I=\int_\limits{1}^{2} e^{x} \log _{\theta} x d x+\int_\limits{1}^{2} e^{x} d x+\int_\limits{1}^{2} \frac{e^{x}}{x} d x$
$\Rightarrow I=\int_\limits{1}^{2} e^{x} \log _{e} x d x+\left[e^{x}\right]_{1}^{2}+\left[e^{x} \log _{\theta} x_{1}^{2}\right.$
$-\int_\limits{1}^{2} e^{x} \log _{\theta} x d x$
$\Rightarrow I=\left(e^{2}-e^{1}\right)+\left(e^{2} \log _{\theta} 2-0\right)$
$=e^{2}\left(1+\log _{\theta}\right.$ 2) $-e$
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.