We are asked to find the value of the determinant:
\(\begin{vmatrix} 4 & 4^2 & 4^3 \\ 3 & 3^2 & 3^3 \\ 2 & 2^2 & 2^3 \end{vmatrix}\)
This is a 3x3 matrix where the elements are powers of 4, 3, and 2. We can calculate the determinant by expanding along the first row:
\(\text{det} = 4 \cdot \begin{vmatrix} 3^2 & 3^3 \\ 2^2 & 2^3 \end{vmatrix} - 4^2 \cdot \begin{vmatrix} 3 & 3^3 \\ 2 & 2^3 \end{vmatrix} + 4^3 \cdot \begin{vmatrix} 3 & 3^2 \\ 2 & 2^2 \end{vmatrix}\)
Now, calculate the 2x2 determinants:
\(\begin{vmatrix} 3^2 & 3^3 \\ 2^2 & 2^3 \end{vmatrix} = \begin{vmatrix} 9 & 27 \\ 4 & 8 \end{vmatrix} = (9 \times 8) - (27 \times 4) = 72 - 108 = -36\)
\(\begin{vmatrix} 3 & 3^3 \\ 2 & 2^3 \end{vmatrix} = \begin{vmatrix} 3 & 27 \\ 2 & 8 \end{vmatrix} = (3 \times 8) - (27 \times 2) = 24 - 54 = -30\)
\(\begin{vmatrix} 3 & 3^2 \\ 2 & 2^2 \end{vmatrix} = \begin{vmatrix} 3 & 9 \\ 2 & 4 \end{vmatrix} = (3 \times 4) - (9 \times 2) = 12 - 18 = -6\)
Substitute these values back into the determinant expansion:
\(\text{det} = 4 \cdot (-36) - 16 \cdot (-30) + 64 \cdot (-6)\)
\(\text{det} = -144 + 480 - 384 = -48\)
The value of the determinant is \( -48 \).
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).