We are asked to find the value of the determinant:
\(\begin{vmatrix} 4 & 4^2 & 4^3 \\ 3 & 3^2 & 3^3 \\ 2 & 2^2 & 2^3 \end{vmatrix}\)
This is a 3x3 matrix where the elements are powers of 4, 3, and 2. We can calculate the determinant by expanding along the first row:
\(\text{det} = 4 \cdot \begin{vmatrix} 3^2 & 3^3 \\ 2^2 & 2^3 \end{vmatrix} - 4^2 \cdot \begin{vmatrix} 3 & 3^3 \\ 2 & 2^3 \end{vmatrix} + 4^3 \cdot \begin{vmatrix} 3 & 3^2 \\ 2 & 2^2 \end{vmatrix}\)
Now, calculate the 2x2 determinants:
\(\begin{vmatrix} 3^2 & 3^3 \\ 2^2 & 2^3 \end{vmatrix} = \begin{vmatrix} 9 & 27 \\ 4 & 8 \end{vmatrix} = (9 \times 8) - (27 \times 4) = 72 - 108 = -36\)
\(\begin{vmatrix} 3 & 3^3 \\ 2 & 2^3 \end{vmatrix} = \begin{vmatrix} 3 & 27 \\ 2 & 8 \end{vmatrix} = (3 \times 8) - (27 \times 2) = 24 - 54 = -30\)
\(\begin{vmatrix} 3 & 3^2 \\ 2 & 2^2 \end{vmatrix} = \begin{vmatrix} 3 & 9 \\ 2 & 4 \end{vmatrix} = (3 \times 4) - (9 \times 2) = 12 - 18 = -6\)
Substitute these values back into the determinant expansion:
\(\text{det} = 4 \cdot (-36) - 16 \cdot (-30) + 64 \cdot (-6)\)
\(\text{det} = -144 + 480 - 384 = -48\)
The value of the determinant is \( -48 \).
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to