We are asked to find the value of the determinant:
\(\begin{vmatrix} 4 & 4^2 & 4^3 \\ 3 & 3^2 & 3^3 \\ 2 & 2^2 & 2^3 \end{vmatrix}\)
This is a 3x3 matrix where the elements are powers of 4, 3, and 2. We can calculate the determinant by expanding along the first row:
\(\text{det} = 4 \cdot \begin{vmatrix} 3^2 & 3^3 \\ 2^2 & 2^3 \end{vmatrix} - 4^2 \cdot \begin{vmatrix} 3 & 3^3 \\ 2 & 2^3 \end{vmatrix} + 4^3 \cdot \begin{vmatrix} 3 & 3^2 \\ 2 & 2^2 \end{vmatrix}\)
Now, calculate the 2x2 determinants:
\(\begin{vmatrix} 3^2 & 3^3 \\ 2^2 & 2^3 \end{vmatrix} = \begin{vmatrix} 9 & 27 \\ 4 & 8 \end{vmatrix} = (9 \times 8) - (27 \times 4) = 72 - 108 = -36\)
\(\begin{vmatrix} 3 & 3^3 \\ 2 & 2^3 \end{vmatrix} = \begin{vmatrix} 3 & 27 \\ 2 & 8 \end{vmatrix} = (3 \times 8) - (27 \times 2) = 24 - 54 = -30\)
\(\begin{vmatrix} 3 & 3^2 \\ 2 & 2^2 \end{vmatrix} = \begin{vmatrix} 3 & 9 \\ 2 & 4 \end{vmatrix} = (3 \times 4) - (9 \times 2) = 12 - 18 = -6\)
Substitute these values back into the determinant expansion:
\(\text{det} = 4 \cdot (-36) - 16 \cdot (-30) + 64 \cdot (-6)\)
\(\text{det} = -144 + 480 - 384 = -48\)
The value of the determinant is \( -48 \).
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to