Step 1: Understanding the Concept:
This problem requires knowledge of the standard trigonometric ratios for specific angles, namely 30° and 60°.
Step 2: Key Formula or Approach:
We need the following standard values:
\(\sin 30^\circ = \frac{1}{2}\)
\(\cos 30^\circ = \frac{\sqrt{3}}{2}\)
\(\sin 60^\circ = \frac{\sqrt{3}}{2}\)
\(\cos 60^\circ = \frac{1}{2}\)
Step 3: Detailed Explanation:
Substitute these values into the given expression:
\[
(\sin 30^\circ + \cos 30^\circ) - (\sin 60^\circ + \cos 60^\circ)
\]
\[
= \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right)
\]
Since the terms inside both parentheses are identical, subtracting them will result in zero.
\[
= \frac{1 + \sqrt{3}}{2} - \frac{\sqrt{3} + 1}{2}
\]
\[
= 0
\]
Step 4: Final Answer:
The value of the expression is 0. This matches option (B).