Question:

The value of $\displaystyle \lim_{n \to \infty}\frac{\left(n!\right)^{\frac{1}{n}}}{n}$ is

Updated On: Apr 25, 2024
  • 1
  • $\frac{1}{e^{2}}$
  • $\frac{1}{2e}$
  • $\frac{1}{e}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$\displaystyle \lim _{x \rightarrow \infty} \frac{(n !)^{1 / n}}{n}=\displaystyle \lim _{n \rightarrow \infty}\left(\frac{n !}{n^{n}}\right)^{1 / n}$
We have, $\frac{n !}{n^{n}}=\frac{1 \cdot 2 \cdot 3}{n \cdot n \cdot n} \quad n$
$\therefore \left\{\frac{n !}{n^{n}}\right\}^{1 / n}=\left\{\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{r}{n} \cdots \frac{n}{n}\right\}^{1 / n}$
$\Rightarrow \displaystyle\lim _{n \rightarrow \infty}\left\{\frac{n !}{n^{n}}\right\}^{1 / n}$
$=\displaystyle\lim _{n \rightarrow \infty}\left\{\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{r}{n} \cdots \frac{n}{n}\right\}^{1 / n}$
Let $A=\displaystyle\lim _{n \rightarrow \infty}\left\{\frac{n !}{n^{n}}\right\}^{1 / n}$
Then, $A=\displaystyle\lim _{n \rightarrow \infty}\left\{\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{r}{n} \cdots \frac{n}{n}\right\}^{1 / n}$
$\Rightarrow \log A =\displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \Sigma \log \left(\frac{r}{n}\right)=\int\limits_{0}^{1} \log x d x$
$=\left[x \log x-\int \frac{1}{x} \cdot x d x\right]_{0}^{1}$
Integrating by parts
$=[x \log x-x]_{0}^{1}=-1$
$\Rightarrow A=e^{-1}=\frac{1}{e}$
Was this answer helpful?
0
0

Concepts Used:

Limits

A function's limit is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.

If limx→a- f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the left of ‘a’. This value is also called the left-hand limit of ‘f’ at a.

If limx→a+ f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the right of ‘a’. This value is also called the right-hand limit of f(x) at a.

If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by lim x→a f(x).