The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
We are to evaluate:
\[ I = \int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx \]
Break the integral into regions depending on the sign of \(x\) because of \(|x|\). For \(x \ge 0\), \(|x| = x\); for \(x < 0\), \(|x| = -x\).
Step 1: Case 1 – for \(x \ge 0\):
\[ |x| - x = 0 \quad \Rightarrow \quad \sqrt{|x| - x} = 0 \] \[ \Rightarrow f(x) = \frac{(1 + 0)e^x + (0)e^{-x}}{e^x + e^{-x}} = \frac{e^x}{e^x + e^{-x}} \]
Step 2: Case 2 – for \(x < 0\):
\[ |x| = -x \Rightarrow |x| - x = -x - x = -2x \] \[ \sqrt{|x| - x} = \sqrt{-2x} \quad \text{(since }x<0\text{, } -2x>0) \] \[ \Rightarrow f(x) = \frac{(1 + \sqrt{-2x})e^x + (\sqrt{-2x})e^{-x}}{e^x + e^{-x}} \]
Step 3: Use symmetry to simplify the integral.
Let’s test \(f(-x)\) for \(x>0\):
\[ f(-x) = \frac{(1 + \sqrt{|{-x}| - (-x)})e^{-x} + (\sqrt{|{-x}| - (-x)})e^{x}}{e^{-x} + e^{x}} \] Since \(|-x| = x\), \[ |{-x}| - (-x) = x + x = 2x \Rightarrow \sqrt{|{-x}| - (-x)} = \sqrt{2x} \] \[ f(-x) = \frac{(1 + \sqrt{2x})e^{-x} + (\sqrt{2x})e^{x}}{e^x + e^{-x}} \]
Hence the integrand is different for positive and negative parts. We compute each separately.
Step 4: Split the integral:
\[ I = \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx \] For \(x>0\): \[ f(x) = \frac{e^x}{e^x + e^{-x}} = \frac{1}{1 + e^{-2x}} \] For \(x<0\): \[ f(x) = \frac{(1 + \sqrt{-2x})e^x + (\sqrt{-2x})e^{-x}}{e^x + e^{-x}} \] This looks complex, so let’s use substitution symmetry: let \(x=-t\) in the first part, with \(t\in[0,1]\). Then: \[ I = \int_{0}^{1} f(-t)(-dt) + \int_{0}^{1} f(x)\,dx = \int_{0}^{1} [f(x) + f(-x)]\,dx \] \[ \Rightarrow I = \int_{0}^{1} \frac{e^x + (1+\sqrt{2x})e^{-x} + \sqrt{2x}e^{x}}{e^x + e^{-x}}\,dx \] Combine: \[ f(x)+f(-x) = \frac{(1+\sqrt{2x})(e^x + e^{-x})}{e^x + e^{-x}} = 1+\sqrt{2x} \] \[ \Rightarrow I = \int_0^1 (1 + \sqrt{2x})\,dx \]
Step 5: Evaluate the final simple integral.
\[ I = \int_0^1 1\,dx + \int_0^1 \sqrt{2x}\,dx = [x]_0^1 + \sqrt{2}\int_0^1 x^{1/2}\,dx \] \[ = 1 + \sqrt{2}\left[\frac{2}{3}x^{3/2}\right]_0^1 = 1 + \frac{2\sqrt{2}}{3} \]
The value of the given integral is:
\[ \boxed{1 + \frac{2\sqrt{2}}{3}} \]
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 