The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
We are to evaluate:
\[ I = \int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx \]
Break the integral into regions depending on the sign of \(x\) because of \(|x|\). For \(x \ge 0\), \(|x| = x\); for \(x < 0\), \(|x| = -x\).
Step 1: Case 1 – for \(x \ge 0\):
\[ |x| - x = 0 \quad \Rightarrow \quad \sqrt{|x| - x} = 0 \] \[ \Rightarrow f(x) = \frac{(1 + 0)e^x + (0)e^{-x}}{e^x + e^{-x}} = \frac{e^x}{e^x + e^{-x}} \]
Step 2: Case 2 – for \(x < 0\):
\[ |x| = -x \Rightarrow |x| - x = -x - x = -2x \] \[ \sqrt{|x| - x} = \sqrt{-2x} \quad \text{(since }x<0\text{, } -2x>0) \] \[ \Rightarrow f(x) = \frac{(1 + \sqrt{-2x})e^x + (\sqrt{-2x})e^{-x}}{e^x + e^{-x}} \]
Step 3: Use symmetry to simplify the integral.
Let’s test \(f(-x)\) for \(x>0\):
\[ f(-x) = \frac{(1 + \sqrt{|{-x}| - (-x)})e^{-x} + (\sqrt{|{-x}| - (-x)})e^{x}}{e^{-x} + e^{x}} \] Since \(|-x| = x\), \[ |{-x}| - (-x) = x + x = 2x \Rightarrow \sqrt{|{-x}| - (-x)} = \sqrt{2x} \] \[ f(-x) = \frac{(1 + \sqrt{2x})e^{-x} + (\sqrt{2x})e^{x}}{e^x + e^{-x}} \]
Hence the integrand is different for positive and negative parts. We compute each separately.
Step 4: Split the integral:
\[ I = \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx \] For \(x>0\): \[ f(x) = \frac{e^x}{e^x + e^{-x}} = \frac{1}{1 + e^{-2x}} \] For \(x<0\): \[ f(x) = \frac{(1 + \sqrt{-2x})e^x + (\sqrt{-2x})e^{-x}}{e^x + e^{-x}} \] This looks complex, so let’s use substitution symmetry: let \(x=-t\) in the first part, with \(t\in[0,1]\). Then: \[ I = \int_{0}^{1} f(-t)(-dt) + \int_{0}^{1} f(x)\,dx = \int_{0}^{1} [f(x) + f(-x)]\,dx \] \[ \Rightarrow I = \int_{0}^{1} \frac{e^x + (1+\sqrt{2x})e^{-x} + \sqrt{2x}e^{x}}{e^x + e^{-x}}\,dx \] Combine: \[ f(x)+f(-x) = \frac{(1+\sqrt{2x})(e^x + e^{-x})}{e^x + e^{-x}} = 1+\sqrt{2x} \] \[ \Rightarrow I = \int_0^1 (1 + \sqrt{2x})\,dx \]
Step 5: Evaluate the final simple integral.
\[ I = \int_0^1 1\,dx + \int_0^1 \sqrt{2x}\,dx = [x]_0^1 + \sqrt{2}\int_0^1 x^{1/2}\,dx \] \[ = 1 + \sqrt{2}\left[\frac{2}{3}x^{3/2}\right]_0^1 = 1 + \frac{2\sqrt{2}}{3} \]
The value of the given integral is:
\[ \boxed{1 + \frac{2\sqrt{2}}{3}} \]
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: