The value of $\frac{48 \,S _{2}}{\pi^{2}}$ is_____
Step 1: Understand the given functions
We are given the functions $g_1(x)$ and $g_2(x)$ defined as follows:
- $g_1(x) = 1$
- $g_2(x) = |4x - \pi|$
Also, we are given the function $f(x) = \sin^2 x$. We are tasked with finding the value of $\frac{48S_2}{\pi^2}$, where $S_2$ is defined as:
$$ S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} f(x) \cdot g_2(x) \, dx = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \left|4x - \pi\right| \, dx. $$
Step 2: Simplify the expression for $S_2$
We need to evaluate the integral for $S_2$. First, express $|4x - \pi|$ as $4|x - \frac{\pi}{4}|$.
Thus, the integral becomes:
$$ S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \cdot 4 \left|x - \frac{\pi}{4}\right| \, dx. $$
We can factor out the constant 4:
$$ S_2 = 4 \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \left|x - \frac{\pi}{4}\right| \, dx. $$
Step 3: Change of variables
Now, let’s make the substitution $x - \frac{\pi}{4} = t$, so that $dx = dt$. When $x = \frac{\pi}{8}$, $t = -\frac{\pi}{8}$, and when $x = \frac{3\pi}{8}$, $t = \frac{\pi}{8}$.
Thus, the integral becomes:
$$ S_2 = 4 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^2 \left( \frac{\pi}{4} + t \right) |t| \, dt. $$
Step 4: Simplify the expression for $\sin^2 \left( \frac{\pi}{4} + t \right)$
We use the trigonometric identity for $\sin^2 \left( \frac{\pi}{4} + t \right)$:
$$ \sin^2 \left( \frac{\pi}{4} + t \right) = \frac{1}{2} \left( 1 - \cos 2 \left( \frac{\pi}{4} + t \right) \right). $$
Substituting this back into the integral, we get:
$$ S_2 = 4 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{1}{2} \left( 1 - \cos \left( 2 \times \left( \frac{\pi}{4} + t \right) \right) \right) |t| \, dt. $$
Simplifying the cosine term:
$$ S_2 = 2 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \left( 1 - \cos \left( \frac{\pi}{2} + 2t \right) \right) |t| \, dt. $$
Step 5: Expand and simplify
The cosine term simplifies as:
$$ \cos \left( \frac{\pi}{2} + 2t \right) = -\sin(2t). $$
Thus, the integral becomes:
$$ S_2 = 2 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \left( 1 + \sin(2t) \right) |t| \, dt. $$
We now split the integral into two parts:
$$ S_2 = 2 \left( \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \, dt + \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \sin(2t) \, dt \right). $$
Step 6: Evaluate the integrals
The first integral is straightforward:
$$ \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \, dt = 2 \int_{0}^{\frac{\pi}{8}} t \, dt = 2 \left[ \frac{t^2}{2} \right]_0^{\frac{\pi}{8}} = 2 \times \frac{\pi^2}{128} = \frac{\pi^2}{64}. $$
The second integral is 0 because $\sin(2t)$ is an odd function and $|t|$ is even, so their product integrated over the symmetric interval $[-\frac{\pi}{8}, \frac{\pi}{8}]$ gives zero:
$$ \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \sin(2t) \, dt = 0. $$
Step 7: Combine the results
Thus, we have:
$$ S_2 = 2 \times \frac{\pi^2}{64} = \frac{\pi^2}{32}. $$
Step 8: Compute $\frac{48S_2}{\pi^2}$
Finally, we compute:
$$ \frac{48S_2}{\pi^2} = \frac{48 \times \frac{\pi^2}{32}}{\pi^2} = \frac{48}{32} = 1.5. $$
Thus, the value of $\frac{48S_2}{\pi^2}$ is 1.5.
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
If the value of the integral
\[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^x 2023}} \right) dx = \frac{\pi}{4} (\pi + a) - 2, \]
then the value of \(a\) is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 