We need to find out the true statements given the matrices \( I, P, Q, R \) with the equation \( QR = RP \).
First, understand the condition \( QR = RP \). This implies the matrices \( Q \) and \( P \) commute under multiplication with the matrix \( R \) i.e. \( QR - RP = 0 \). Since \( R \) has all non-zero entries, it implies certain conditions must hold for the individual entries of \( Q \).
The matrix \( Q \) is given as:
\[\begin{pmatrix} x & y \\ z & 4 \end{pmatrix}\]
where \( x, y, z \) are non-zero real numbers.
Verify the following statements:
1. The determinant of \( Q - 2I \) is zero.
The matrix \( Q - 2I \) is:
\[
\begin{pmatrix} x & y \\ z & 4 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} x-2 & y \\ z & 2 \end{pmatrix}
\]
The determinant is:
\[
\text{det}(Q - 2I) = (x-2)\cdot 2 - y\cdot z
\]
Given \( yz = 2 \), substituting yields:
\[
\text{det}(Q - 2I) = 2(x-2) - 2 = 2x - 4 - 2 = 2x - 6
\]
To be zero, \( 2x - 6 = 0 \) which implies \( x = 3 \). So with this condition, this statement can be true depending on the value of \( x \).
2. The determinant of \( Q - 6I \) is 12.
The matrix \( Q - 6I \) is:
\[
\begin{pmatrix} x & y \\ z & 4 \end{pmatrix} - \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix} = \begin{pmatrix} x-6 & y \\ z & -2 \end{pmatrix}
\]
The determinant is:
\[
\text{det}(Q - 6I) = (x-6)(-2) - yz = -2x + 12 - 2
\]
Setting \( \text{det}(Q - 6I) = 12 \) means:
\[
-2x + 10 = 12 \implies -2x = 2 \implies x = -1
\]
This doesn't go along with \( QR = RP \). Hence this statement is generally false.
3. The determinant of \( Q - 3I \) is 15.
The matrix \( Q - 3I \) is:
\[
\begin{pmatrix} x & y \\ z & 4 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} x-3 & y \\ z & 1 \end{pmatrix}
\]
The determinant is:
\[
\text{det}(Q - 3I) = (x-3)\cdot 1 - yz
\]
Substituting \( yz = 2 \):
\[
\text{det}(Q - 3I) = x - 3 - 2 = x - 5
\]
Setting \( \text{det}(Q - 3I) = 15 \):
\[
x - 5 = 15 \implies x = 20
\]
With this, the determinant condition holds well.
4. \( yz = 2 \).
This is already given as part of our problem's conditions, hence it's true.
Final correct statements based on values for \( x, y, z \):
The determinant of \( Q - 2I \) is zero (condition: \( x = 3 \)),
The determinant of \( Q - 3I \) is 15 (condition: \( x = 20 \)),
\( yz = 2 \).