To solve for the absolute error in the slit width \( b \) (in \(\mu m\)), we start with the given equation for single slit diffraction:
\[
\frac{bd}{D} = m\lambda
\]
Step 1: Solve for \( b \)
The equation relates the slit width \( b \), the distance \( d \) between the \( m \)-th diffraction maximum and the central maximum, the distance \( D \) between the slit and the screen, and the wavelength \( \lambda \). Rearranging to isolate \( b \):
\[
b = \frac{m\lambda D}{d}
\]
Given:
- \( m = 3 \),
- \( \lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m} = 6 \times 10^{-7} \, \text{m} \),
- \( D = 1 \, \text{m} \),
- \( d = 5 \, \text{mm} = 5 \times 10^{-3} \, \text{m} \).
Substitute the values:
\[
b = \frac{3 \times (6 \times 10^{-7}) \times 1}{5 \times 10^{-3}} = \frac{18 \times 10^{-7}}{5 \times 10^{-3}} = \frac{18}{5} \times 10^{-4} = 3.6 \times 10^{-4} \, \text{m}
\]
Convert \( b \) to micrometers (\( 1 \, \text{m} = 10^6 \, \mu m \)):
\[
b = 3.6 \times 10^{-4} \times 10^6 = 360 \, \mu m
\]
Step 2: Calculate the absolute error in \( b \)
The absolute error in \( b \) arises from the measurement errors in \( d \), \( D \), \( \lambda \), and \( m \). The problem states that \( D \) and \( d \) are measured with scales of least count \( 1 \, \text{cm} \) and \( 1 \, \text{mm} \), respectively, and \( \lambda \) and \( m \) are known precisely.
- Least count of \( D \): \( \Delta D = 1 \, \text{cm} = 0.01 \, \text{m} \),
- Least count of \( d \): \( \Delta d = 1 \, \text{mm} = 0.001 \, \text{m} \),
- \( \lambda \) and \( m \): no error.
Using the formula for propagation of relative error:
\[
\frac{\Delta b}{b} = \frac{\Delta D}{D} + \frac{\Delta d}{d}
\]
\[
\frac{\Delta D}{D} = \frac{0.01}{1} = 0.01, \quad \frac{\Delta d}{d} = \frac{0.001}{0.005} = 0.2
\]
\[
\frac{\Delta b}{b} = 0.01 + 0.2 = 0.21
\]
Now calculate the absolute error:
\[
\Delta b = b \times \frac{\Delta b}{b} = 360 \times 0.21 = 75.6 \, \mu m
\]
Final Answer:
The absolute error in the value of \( b \) is:
\[
\boxed{75.6 \, \mu m}
\]