We are given the expression:
\[
\frac{1 - \tan^2 30^\circ}{1 + \tan^2 30^\circ}
\]
We know from standard trigonometric values that \( \tan 30^\circ = \frac{1}{\sqrt{3}} \).
Now, substituting \( \tan 30^\circ = \frac{1}{\sqrt{3}} \) into the expression:
\[
\frac{1 - \left(\frac{1}{\sqrt{3}}\right)^2}{1 + \left(\frac{1}{\sqrt{3}}\right)^2} = \frac{1 - \frac{1}{3}}{1 + \frac{1}{3}} = \frac{\frac{2}{3}}{\frac{4}{3}} = \frac{2}{4} = \frac{1}{2}
\]
Therefore, the correct answer is (B) \( \frac{1}{2} \).