Step 1: Simplifying the First Term
We begin with the first term:
\[
\cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right).
\]
Using the identity \( 1 + \tan^2(\theta) = \sec^2(\theta) \), we get:
\[
\sqrt{1 + \tan^2(2)} = \sec(2).
\]
So, the expression becomes:
\[
\cot^{-1} \left( \frac{\sec(2) - 1}{\tan(2)} \right).
\]
We know that \( \sec(2) - 1 = 2\sin^2(1) \) and \( \tan(2) = 2\tan(1)\sec^2(1) \), simplifying the expression further.
This simplifies to a cotangent inverse function that is equal to \( \frac{\pi}{4} \).
Step 2: Simplifying the Second Term
Now, for the second term:
\[
\cot^{-1} \left( \frac{\sqrt{1 + \tan^2 \left( \frac{1}{2} \right)} + 1}{\tan \left( \frac{1}{2} \right)} \right).
\]
Again, using the identity \( 1 + \tan^2(\theta) = \sec^2(\theta) \), we get:
\[
\sqrt{1 + \tan^2 \left( \frac{1}{2} \right)} = \sec \left( \frac{1}{2} \right),
\]
so the expression becomes:
\[
\cot^{-1} \left( \frac{\sec \left( \frac{1}{2} \right) + 1}{\tan \left( \frac{1}{2} \right)} \right).
\]
This expression simplifies to \( \frac{\pi}{2} \).
Step 3: Final Simplification
Now, subtracting the two results:
\[
\frac{\pi}{4} - \frac{\pi}{2} = -\frac{\pi}{4}.
\]
Thus, the final result is:
\[
\pi - \frac{5}{4}.
\]