To solve this problem, we need to evaluate the expression and simplify the terms involved in the given inverse cotangent expressions. The expression is:
\(\cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2 \left( \frac{1}{2} \right)} + 1}{\tan \left( \frac{1}{2} \right)} \right)\)
First, recognize that \(\sqrt{1 + \tan^2(x)}\) simplifies using the identity \(\sec(x) = \sqrt{1+\tan^2(x)}\). Thus:
For the first term:
Using the identity \(\sec(x) - 1 = \tan(x) \cot(x)\), the expression becomes:
For the second term:
In this case, evaluate using the complementary angle identity, which suggests manipulating the cotangent identity appropriately. Since:
Adjustment yields:
But this requires careful simplification and conceptual understanding of cotangent addition:
Ultimately, upon recognizing both co-tangents and trigonometric simplifications, the expression simplifies using angle subtraction identities:
Thus, the value of the expression is \(\pi - \frac{5}{4}\). This analysis confirms the correct answer is:
\(\pi - \frac{5}{4}\)
This detailed step-by-step breakdown leverages trigonometric identities and simplifications, applied correctly, to obtain the solution. Understanding angle transformations in trigonometry is crucial for queries involving inverse trigonometric functions.
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
A bar magnet has total length \( 2l = 20 \) units and the field point \( P \) is at a distance \( d = 10 \) units from the centre of the magnet. If the relative uncertainty of length measurement is 1\%, then the uncertainty of the magnetic field at point P is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: