\[ \int_{-\pi}^{\pi} \frac{2y(1 + \sin y)}{1 + \cos^2 y} \, dy = \int_{-\pi}^{\pi} \frac{2y}{1 + \cos^2 y} \, dy + \int_{-\pi}^{\pi} \frac{2y \sin y}{1 + \cos^2 y} \, dy \]
The first integral represents an odd function, so:
\[ \int_{-\pi}^{\pi} \frac{2y}{1 + \cos^2 y} \, dy = 0 \]
Now consider the second integral:
\[ I = \int_{-\pi}^{\pi} \frac{2y \sin y}{1 + \cos^2 y} \, dy = 2 \int_{0}^{\pi} \frac{y \sin y}{1 + \cos^2 y} \, dy \]
We can rewrite this as:
\[ I = 4 \int_{0}^{\pi} \frac{y \sin y}{1 + \cos^2 y} \, dy \]
Using the symmetry properties and integrating by parts, we find:
\[ I = \pi^2 \]
Thus, the answer is Option (1): \(\pi^2\)