\[ \int_{-\pi}^{\pi} \frac{2y(1 + \sin y)}{1 + \cos^2 y} \, dy = \int_{-\pi}^{\pi} \frac{2y}{1 + \cos^2 y} \, dy + \int_{-\pi}^{\pi} \frac{2y \sin y}{1 + \cos^2 y} \, dy \]
The first integral represents an odd function, so:
\[ \int_{-\pi}^{\pi} \frac{2y}{1 + \cos^2 y} \, dy = 0 \]
Now consider the second integral:
\[ I = \int_{-\pi}^{\pi} \frac{2y \sin y}{1 + \cos^2 y} \, dy = 2 \int_{0}^{\pi} \frac{y \sin y}{1 + \cos^2 y} \, dy \]
We can rewrite this as:
\[ I = 4 \int_{0}^{\pi} \frac{y \sin y}{1 + \cos^2 y} \, dy \]
Using the symmetry properties and integrating by parts, we find:
\[ I = \pi^2 \]
Thus, the answer is Option (1): \(\pi^2\)
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
