
To solve the problem, we are given the expression:
\[ \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} \]
1. Multiply Numerator and Denominator by Conjugate of Denominator:
Multiply both numerator and denominator by \( \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} \cdot \frac{\sqrt{1 + \sin \theta}}{\sqrt{1 + \sin \theta}} \) to rationalize:
\[ \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} = \frac{\sqrt{(1 + \sin \theta)^2}}{\sqrt{1 - \sin^2 \theta}} = \frac{1 + \sin \theta}{\sqrt{\cos^2 \theta}} = \frac{1 + \sin \theta}{\cos \theta} \]
2. Split the Expression:
\[ \frac{1 + \sin \theta}{\cos \theta} = \frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta} = \sec \theta + \tan \theta \]
Final Answer:
The value of the expression is \({\sec \theta + \tan \theta} \).
If \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \), then the number of solutions of \[ \sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1)\csc \theta - 4 = 0 \] is equal to ______.