\[ \csc\theta = \frac{2(\sqrt{3}-1) \pm \sqrt{16 + 8\sqrt{3}}}{2\sqrt{3}} \] \[ = \frac{2(\sqrt{3}-1) \pm \sqrt{16 + 8\sqrt{3}}}{2\sqrt{3}} \] Thus, \[ \csc\theta = 2 \text{ or } \csc\theta = -\frac{2}{\sqrt{3}} \] Therefore, \[ \sin\theta = \frac{1}{2} \text{ or } \sin\theta = -\frac{\sqrt{3}}{2} \] Thus, \( \sin\theta = \frac{1}{2} \) has 3 solutions, and \( \sin\theta = -\frac{\sqrt{3}}{2} \) has 3 solutions in the interval \( \left[ \frac{7\pi}{6}, \frac{4\pi}{3} \right] \).
Thus, the number of solutions is 6.
The given graph illustrates: