\[ \csc\theta = \frac{2(\sqrt{3}-1) \pm \sqrt{16 + 8\sqrt{3}}}{2\sqrt{3}} \] \[ = \frac{2(\sqrt{3}-1) \pm \sqrt{16 + 8\sqrt{3}}}{2\sqrt{3}} \] Thus, \[ \csc\theta = 2 \text{ or } \csc\theta = -\frac{2}{\sqrt{3}} \] Therefore, \[ \sin\theta = \frac{1}{2} \text{ or } \sin\theta = -\frac{\sqrt{3}}{2} \] Thus, \( \sin\theta = \frac{1}{2} \) has 3 solutions, and \( \sin\theta = -\frac{\sqrt{3}}{2} \) has 3 solutions in the interval \( \left[ \frac{7\pi}{6}, \frac{4\pi}{3} \right] \).
Thus, the number of solutions is 6.
The given graph illustrates:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).