If \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \), then the number of solutions of \[ \sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1)\csc \theta - 4 = 0 \] is equal to ______.
The problem asks for the number of solutions to the trigonometric equation \( \sqrt{3} \csc^2\theta - 2(\sqrt{3} - 1) \csc\theta - 4 = 0 \) within the specified interval \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \).
The given equation is a quadratic equation in terms of \( \csc\theta \). We can solve for \( \csc\theta \) by treating it as a variable in a standard quadratic equation \( ax^2 + bx + c = 0 \). The solutions for \(x\) are given by the quadratic formula:
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Once we find the values of \( \csc\theta \), we determine the corresponding values of \( \sin\theta \). Finally, we find all angles \( \theta \) that satisfy these values and lie within the given interval \( \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \).
Step 1: Solve the quadratic equation for \( \csc\theta \).
Let \( x = \csc\theta \). The equation becomes \( \sqrt{3}x^2 - 2(\sqrt{3} - 1)x - 4 = 0 \). Here, \( a = \sqrt{3} \), \( b = -2(\sqrt{3} - 1) \), and \( c = -4 \). We use the quadratic formula to find the values of \(x\).
Step 2: Calculate the discriminant (\( \Delta = b^2 - 4ac \)).
\[ \Delta = \left(-2(\sqrt{3} - 1)\right)^2 - 4(\sqrt{3})(-4) \] \[ = 4(\sqrt{3}^2 - 2\sqrt{3} + 1) + 16\sqrt{3} \] \[ = 4(3 - 2\sqrt{3} + 1) + 16\sqrt{3} \] \[ = 4(4 - 2\sqrt{3}) + 16\sqrt{3} \] \[ = 16 - 8\sqrt{3} + 16\sqrt{3} = 16 + 8\sqrt{3} \]
To simplify the square root of the discriminant, we write it as a perfect square:
\[ 16 + 8\sqrt{3} = 4(4 + 2\sqrt{3}) = 4(3 + 1 + 2\sqrt{3}) = 4(\sqrt{3} + 1)^2 \]
So, \( \sqrt{\Delta} = \sqrt{4(\sqrt{3} + 1)^2} = 2(\sqrt{3} + 1) \).
Step 3: Find the two possible values for \( \csc\theta \).
\[ \csc\theta = \frac{-[-2(\sqrt{3} - 1)] \pm 2(\sqrt{3} + 1)}{2\sqrt{3}} \] \[ \csc\theta = \frac{2(\sqrt{3} - 1) \pm 2(\sqrt{3} + 1)}{2\sqrt{3}} = \frac{(\sqrt{3} - 1) \pm (\sqrt{3} + 1)}{\sqrt{3}} \]
This leads to two cases:
Case 1 (using the '+' sign):
\[ \csc\theta = \frac{(\sqrt{3} - 1) + (\sqrt{3} + 1)}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2 \]
Case 2 (using the '-' sign):
\[ \csc\theta = \frac{(\sqrt{3} - 1) - (\sqrt{3} + 1)}{\sqrt{3}} = \frac{-2}{\sqrt{3}} \]
Step 4: Find the solutions for each case within the interval \( \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \).
From Case 1: \( \csc\theta = 2 \implies \sin\theta = \frac{1}{2} \). The principal values for \( \theta \) are \( \frac{\pi}{6} \) and \( \pi - \frac{\pi}{6} = \frac{5\pi}{6} \). We check for solutions in the interval \( \left[ -210^\circ, 240^\circ \right] \). The solutions are:
So, from this case, we have three solutions: \( -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6} \).
From Case 2: \( \csc\theta = -\frac{2}{\sqrt{3}} \implies \sin\theta = -\frac{\sqrt{3}}{2} \). The principal values for \( \theta \) (in the range \( [-\pi, \pi] \)) are \( -\frac{\pi}{3} \) and \( -\frac{2\pi}{3} \). We check for solutions in the interval \( \left[ -210^\circ, 240^\circ \right] \). The solutions are:
So, from this case, we have three solutions: \( -\frac{2\pi}{3}, -\frac{\pi}{3}, \frac{4\pi}{3} \).
Step 5: Count the total number of distinct solutions.
The solutions from Case 1 are \( \left\{ -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6} \right\} \). The solutions from Case 2 are \( \left\{ -\frac{2\pi}{3}, -\frac{\pi}{3}, \frac{4\pi}{3} \right\} \). All these solutions are distinct and lie within the given interval. Total number of solutions = 3 + 3 = 6.
Therefore, the total number of solutions is 6.
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):
Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)
