Since CH4 is polyatomic Non-Linear D.O.F of CH4:
T. DOF = 3 R DOF = 3
The molecule CH4 (methane) is a polyatomic molecule with a non-linear structure.
For non-linear polyatomic molecules:
The translational degrees of freedom (ft) are 3, corresponding to motion along the x, y, and z axes.
The rotational degrees of freedom (fr) are also 3, as the molecule can rotate about three mutually perpendicular axes.
Thus, for CH4, we have:
\[ f_{t} = 3 \, \text{and} \, f_{r} = 3. \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).